فهرست مطالب

Cell Journal - Volume:19 Issue: 1, Spring 2017

Cell Journal (Yakhteh)
Volume:19 Issue: 1, Spring 2017

  • تاریخ انتشار: 1396/01/21
  • تعداد عناوین: 17
|
  • Nazem Ghasemi, Shahnaz Razavi, Elham Nikzad Page 1
    Multiple sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS) lesions that can lead to severe physical or cognitive disability as well as neurological defects. Although the etiology and pathogenesis of MS remains unclear, the present documents illustrate that the cause of MS is multifactorial and include genetic predisposition together with environmental factors such as exposure to infectious agents, vitamin deficiencies, and smoking. These agents are able to trigger a cascade of events in the immune system which lead to neuronal cell death accompanied by nerve demyelination and neuronal dysfunction. Conventional therapies for MS are based on the use of anti-inflammatory and immunomodulatory drugs, but these treatments are not able to stop the destruction of nerve tissue. Thus, other strategies such as stem cell transplantation have been proposed for the treatment of MS. Overall, it is important that neurologists be aware of current information regarding the pathogenesis, etiology, diagnostic criteria, and treatment of MS. Thus, this issue has been discussed according to recent available information.
    Keywords: Multiple Sclerosis, Cell Therapy, Etiology, Demyelination
  • Vida Mokhtari, Parvaneh Afsharian, Maryam Shahhoseini, Mehdi Kalantar, Ashraf Moini Page 11
    N-acetyl cysteine (NAC), as a nutritional supplement, is a greatly applied antioxidant in vivo and in vitro. NAC is a precursor of L-cysteine that results in glutathione elevation biosynthesis. It acts directly as a scavenger of free radicals, especially oxygen radicals. NAC is a powerful antioxidant. It is also recommended as a potential treatment option for different disorders resulted from generation of free oxygen radicals. Additionally, it is a protected and endured mucolytic drug that mellows tenacious mucous discharges. It has been used for treatment of various diseases in a direct action or in a combination with some other medications. This paper presents a review on various applications of NAC in treatment of several diseases.
    Keywords: N, Acetyl Cysteine, Antioxidant, Oxidative Stres
  • Zahra Shams Mofarahe, Mojdeh Salehnia, Marefat Ghaffari Novin, Nassim Ghorbanmehr, Mohammad Gholami Fesharaki Page 18
    Objective
    This study was designed to evaluate the effects of vitrification and in vitro culture of human ovarian tissue on the expression of oocytic and follicular cell-related genes.
    Materials And Methods
    In this experimental study, ovarian tissue samples were obtained from eight transsexual women. Samples were cut into small fragments and were then assigned to vitrified and non-vitrified groups. In each group, some tissue fragments were divided into un-cultured and cultured (in α-MEM medium for 2 weeks) subgroups. The normality of follicles was assessed by morphological observation under a light microscope using hematoxylin and eosin (H&E) staining. Expression levels of factor in the germ line alpha (FIGLA), KIT ligand (KL), growth differentiation factor 9 (GDF-9) and follicle stimulating hormone receptor (FSHR) genes were quantified in both groups by real-time reverse transcriptase polymerase chain reaction (RT-PCR) at the beginning and the end of culture.
    Results
    The percentage of normal follicles was similar between non-cultured vitrified and non-vitrified groups (P>0.05), however, cultured tissues had significantly fewer normal follicles than non-cultured tissues in both vitrified and non-vitrified groups (P
    Conclusion
    Human ovarian vitrification following in vitro culture has no impairing effects on follicle normality and development and expression of related-genes. However, in vitro culture condition has deleterious effects on normality of follicles.
    Keywords: Vitrification, Folliculogenesis, Genes Expression, Ovarian Follicles, Human
  • Fahimeh Asadi, Mohammad Ali Sadighi Gilani, Azadeh Ghaheri, Javad Roodgar Saffari, Mohammadreza Zamanian Page 27
    Objective
    Microdeletions of the Y chromosome long arm are the most common molecular genetic causes of severe infertility in men. They affect three regions including azoospermia factors (AZFa, AZFb and AZFc), which contain various genes involved in spermatogenesis. The aim of the present study was to reveal the patterns of Y chromosome microdeletions in Iranian infertile men referred to Royan Institute with azoospermia/ severe oligospermia.
    Materials And Methods
    Through a cross-sectional study, 1885 infertile men referred to Royan Institute with azoospermia/severe oligospermia were examined for Y chromosome microdeletions from March 2012 to March 2014. We determined microdeletions of the Y chromosome in the AZFa, AZFb and AZFc regions using multiplex Polymerase chain reaction and six different Sequence-Tagged Site (STS) markers.
    Results
    Among the 1885 infertile men, we determined 99 cases of Y chromosome microdeletions (5.2%). Among 99 cases, AZFc microdeletions were found in 70 cases (70.7%); AZFb microdeletions in 5 cases (5%); and AZFa microdeletions in only 3 cases (3%). AZFbc microdeletions were detected in 18 cases (18.1%) and AZFabc microdeletions in 3 cases (3%).
    Conclusion
    Based on these data, our results are in agreement with similar studies from other regions of the world as well as two other recent studies from Iran which have mostly reported a frequency of less than 10% for Y chromosome microdeletions.
    Keywords: Male Infertility, Y Chromosome, Oligospermia, Azoospermia
  • Maryam Jazayeri, Mohammad Ali Shokrgozar, Nooshin Haghighipour, Bahram Bolouri, Fereshteh Mirahmadi, Mehdi Farokhi Page 34
    Objective
    Most people experience bone damage and bone disorders during their lifetimes. The use of autografts is a suitable way for injury recovery and healing. Mesenchymal stem cells (MSCs) are key players in tissue engineering and regenerative medicine. Their proliferation potential and multipotent differentiation ability enable MSCs to be considered as appropriate cells for therapy and clinical applications. Differentiation of stem cells depends on their microenvironment and biophysical stimulations. The aim of this study is to analyze the effects of an electromagnetic field on osteogenic differentiation of stem cells.
    Materials And Methods
    In this experimental animal study, we assessed the effects of the essential parameters of a pulsatile electromagnetic field on osteogenic differentiation. The main purpose was to identify an optimum electromagnetic field for osteogenesis induction. After isolating MSCs from male Wistar rats, passage-3 (P3) cells were exposed to an electromagnetic field that had an intensity of 0.2 millitesla (mT) and frequency of 15 Hz for 10 days. Flow cytometry analysis confirmed the mesenchymal identity of the isolated cells. Pulsatile electromagnetic field-stimulated cells were examined by immunocytochemistry and real-time polymerase chain reaction (PCR).
    Results
    Electromagnetic field stimulation alone motivated the expression of osteogenic genes. This stimulation was more effective when combined with osteogenic differentiation medium 6 hours per day for 10 days. For the in vivo study, an incision was made in the cranium of each animal, after which we implanted a collagen scaffold seeded with stimulated cells into the animals. Histological analysis revealed bone formation after 10 weeks of implantation.
    Conclusion
    We have shown that the combined use of chemical factors and an electromagnetic field was more effective for inducing osteogenesis. These elements have synergistic effects and are beneficial for bone tissue engineering applications.
    Keywords: Differentiation, Gene Expression, Mesenchymal Stem Cell, Osteocalcin
  • Fatemeh Kazeminasab, Mohammad Marandi, Kamran Ghaedi, Fahimeh Esfarjani, Jamal Moshtaghian Page 45
    Objective
    Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear hormonal receptor superfamily which modulate the expression of genes involved in cholesterol homeostasis. Hence, further unraveling of the molecular function of this gene may be helpful in preventing cardiovascular diseases.
    Materials And Methods
    This experimental intervention study included twelve adult Wistar male rats (12-14 weeks old, 200-220 g) which were divided into the control (n=6) and training (n=6) groups. The training group received exercise on a motor-driven treadmill at 28 meters/minute (0% grade) for 60 minutes a day, 5 days a week for 4 weeks. Rats were sacrificed 24 hours after the last session of exercise. A portion of the liver was excised, immediately washed in ice-cold saline and frozen in liquid nitrogen for extraction of total RNA. Plasma was collected for high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and triglycerides (TG) measurements. All variables were compared by independent t test.
    Results
    A significant increase in LXRα transcript level was observed in trained rats (P0.05).
    Conclusion
    We found that endurance training induces significant elevation in LXRα gene expression and plasma HDL-C concentration resulting in depletion of the cellular cholesterol. Therefore, it seems that a contributor to the positive effects of exercise in cardiovascular disease prevention is through the expression of LXRα, which is a key step in reverse cholesterol transport.
    Keywords: Treadmill Exercise_Liver X Receptor α_High_Density Lipoprotein Cholesterol_Rat
  • Mehrdad Noruzinia, Mahdieh Taghizadeh Page 50
    Objective
    The stem cell theory in the endometriosis provides an advanced avenue of targeting these cells as a novel therapy to eliminate endometriosis. In this regard, studies showed that lovastatin alters the cells from a stem-like state to more differentiated condition and reduces stemness. The aim of this study was to investigate whether lovastatin treatment could influence expression and methylation patterns of genes regulating differentiation of endometrial mesenchymal stem cells (eMSCs) such as BMP2, GATA2 and RUNX2 as well as eMSCs markers.
    Materials And Methods
    In this experimental investigation, MSCs were isolated from endometrial and endometriotic tissues and treated with lovastatin and decitabin. To investigate the osteogenic and adipogenic differentiation of eMSCs treated with the different concentration of lovastatin and decitabin, BMP2, RUNX2 and GATA2 expressions were measured by real-time polymerase chain reaction (PCR). To determine involvement of DNA methylation in BMP2 and GATA2 gene regulations of eMSCs, we used quantitative Methylation Specific PCR (qMSP) for evaluation of the BMP2 promoter status and differentially methylated region of GATA2 exon 4.
    Results
    In the present study, treatment with lovastatin increased expression of BMP2 and RUNX2 and induced BMP2 promoter demethylation. We also demonstrated that lovastatin treatment down-regulated GATA2 expression via inducing methylation. In addition, the results indicated that CD146 cell marker was decreased to 53% in response to lovastatin treatment compared to untreated group.
    Conclusion
    These findings indicated that lovastatin treatment could increase the differentiation of eMSCs toward osteogenic and adiogenic lineages, while it decreased expression of eMSCs markers and subsequently reduced the stemness.
    Keywords: Endometriosis, Lovastatin, Epigenetics, Stemness
  • Chiranjib Chakraborty, Bidyut Mallick, Ashish Ranjan Sharma, Garima Sharma, Supriya Jagga, C. George Priya Doss, Ju, Suk Nam, Sang, Soo Lee Page 65
    Objective
    Druggability of a target protein depends on the interacting micro-environment between the target protein and drugs. Therefore, a precise knowledge of the interacting micro-environment between the target protein and drugs is requisite for drug discovery process. To understand such micro-environment, we performed in silico interaction analysis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-diabetic drugs (saxagliptin, linagliptin and vildagliptin).
    Materials And Methods
    During the theoretical and bioinformatics analysis of micro-environmental properties, we performed drug-likeness study, protein active site predictions, docking analysis and residual interactions with the protein-drug interface. Micro-environmental landscape properties were evaluated through various parameters such as binding energy, intermolecular energy, electrostatic energy, van der Waals’bond痫⢖ energy (EVHD) and ligand efficiency (LE) using different in silico methods. For this study, we have used several servers and software, such as Molsoft prediction server, CASTp server, AutoDock software and LIGPLOT server.
    Results
    Through micro-environmental study, highest log P value was observed for linagliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the binding plot. We also identified the number of H-bonds and residues involved in the hydrophobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases and DPP-4, respectively.
    Conclusion
    Our in silico data obtained for drug-target interactions and micro-environmental signature demonstrates linagliptin as the most stable interacting drug among the tested anti-diabetic medicines.
    Keywords: Dipeptidyl Peptidase, IV (DPP, 4), Saxagliptin, Linagliptin, Vildagliptin
  • Abedin Vakili, Jafar Sadeghzadeh, Ahmad Reza Bandegi, Hamid Reza Sameni, Mahdi Zahedi Khorasani, Mohsen Darabian Page 84
    Objective
    Lavender is used in herbal medicine for different therapeutic purposes. Nonetheless, potential therapeutic effects of this plant in ischemic heart disease and its possible mechanisms remain to be investigated.
    Materials And Methods
    In this experimental study, lavender oil at doses of 200, 400 or 800 mg/kg was administered through gastric gavage for 14 days before infarct-like myocardial injury (MI). The carotid artery and left ventricle were cannulated to record arterial blood pressure (BP) and cardiac function. At the end of experiment, the heart was removed and histopathological alteration, oxidative stress biomarkers as well as tumor necrosis factor-alpha (TNF-α) level were evaluated.
    Results
    Induction of M.I caused cardiac dysfunction, increased levels of lipid peroxidation, TNF-α and troponin I in heart tissue (P
    Conclusion
    Our finding showed that lavender oil has cardioprotective effect through inhibiting oxidative stress and inflammatory pathway in the rat model with infarct-like MI. We suggest that lavender oil may be helpful in prevention or attenuation of heart injury in patients with high risk of myocardial infarction and/or ischemic heart disease.
    Keywords: Myocardial Infarction, TNF, α, Isoproterenol, Oxidative Stress, Rat
  • S.Zahra Bathaie, Meysam Sajjadi Page 94
    Objective
    Crocin (Cro) and crocetin (Crt) are two widely known saffron carotenoids, which exert anticancer effects by different mechanisms. Here, we investigated and compared the preventive effect of Cro and Crt at the initiation and promotion stages of breast cancer induction in an animal model.
    Materials And Methods
    In this experimental study, female Wistar albino rats were injected with three doses of N-methyl-N-nitrosourea (NMU). The preventive intervention was done at different times for the initiation and promotion stages. Thus, Cro/Crt was administered by gavage 20 days before, or one week after, the first NMU injection, for the prevention at the initiation or promotion stages respectively. The treatment was repeated every three days, and continued up to the end of experiment. Tumor appearance was checked by palpation and some parameters were determined after sacrifice.
    Results
    Tumor volume, latency period, and tumor number were significantly decreased in the rat groups treated with both saffron carotenoids for prevention at both the initiation and promotion stages. Tumor incidence was 77% due to NMU injection, which was decreased to 45 and 33% (on average) after Cro and Crt administration, respectively. In addition, enkephaline degrading aminopeptidase (EDA) was decreased significantly in the ovaries of the animals, however, changes in the brain were not significant.
    Conclusion
    Crt/Cro showed a significant protective effect against the NMU-induced breast cancer in rats. However, Crt was more effective than Cro and prevention at the initiation stage was more effective than at the promotion stage.
    Keywords: Chemoprevention, Initiation, Promotion, Tumor Volume, Latency Period
  • Seyed Ruhollah Hosseini, Gholamreza Kaka, Mohammad Taghi Joghataei, Mehdi Hooshmandi, Seyed Homayoon Sadraie, Kayvan Yaghoobi, Korosh Mansoori, Alireza Mohammadi Page 102
    Objective
    Spinal cord injury (SCI) causes inflammation, deformity and cell loss. It has been shown that Melissa officinalis (MO), as herbal medicine, and dexamethasone (DEX) are useful in the prevention of various neurological diseases. The present study evaluated combinational effects of DEX and MO on spinal cord injury.
    Materials And Methods
    Thirty six adult male Wistar rats were used in this experimental study. The weight-drop contusion method was employed to induce spinal cord injury in rats. DEX and MO were administrated alone and together in different treatment groups. Intra-muscular injection of DEX (1 mg/kg) was started three hours after injury and continued once a day for seven days after injury. Intra-peritoneal (I.P) injection of MO (150 mg/ kg) was started one day after injury and continued once a day for 14 days.
    Results
    Our results showed motor and sensory functions were improved significantly in the group received a combination of DEX and MO, compared to spinal cord injury group. Mean cavity area was decreased and loss of lower motor neurons and astrogliosis in the ventral horn of spinal cord was significantly prevented in the group received combination of DEX and Melissa officinalis, compared to spinal cord injury group. Furthermore, the findings showed a significant augmentation of electromyography (EMG) recruitment index, increase of myelin diameter, and up-regulation of myelin basic protein in the treated group with combination of DEX and MO.
    Conclusion
    Results showed that combination of DEX and MO could be considered as a neuroprotective agent in spinal cord injury.
    Keywords: Dexamethasone, Melissa officinalis, Neuroprotective, Spinal Cord Injury
  • Amir Nejad, Moghaddam, Soheila Ajdari, Eisa Tahmasbpour, Hassan Goodarzi, Yunes Panahi, Mostafa Ghanei Page 117
    Objective
    Sulfur mustard (SM) is a potent mutagenic agent that targets several organs, particularly lung tissue. Changes in morphological structure of the airway system are associated with chronic obstructive pulmonary deficiency following exposure to SM. Although numerous studies have demonstrated pathological effects of SM on respiratory organs, unfortunately there is no effective treatment to inhibit further respiratory injuries or induce repair in these patients. Due to the extensive progress and achievements in stem cell therapy, we have aimed to evaluate safety and potential efficacy of systemic mesenchymal stem cell (MSC) administration on a SM-exposed patient with chronic lung injuries.
    Materials And Methods
    In this clinical trial study, our patient received 100×106cells every 20 days for 4 injections over a 2-month period. After each injection we evaluated the safety, pulmonary function tests (PFT), chronic obstructive pulmonary disease (COPD) Assessment Test (CAT), St. George’s Respiratory Questionnaire (SGRQ), Borg Scale Dyspnea Assessment (BSDA), and 6 Minute Walk Test (6MWT). One-way ANOVA test was used in this study which was not significant (P>0.05).
    Results
    There were no infusion toxicities or serious adverse events caused by MSC administration. Although there was no significant difference in PFTs, we found a significant improvement for 6MWT, as well as BSDA, SGRQ, and CAT scores after each injection.
    Conclusion
    Systemic MSC administration appears to be safe in SM-exposed patients with moderate to severe injuries and provides a basis for subsequent cell therapy investigations in other patients with this disorder (Registration Number: IRCT2015110524890N1).
    Keywords: Mesenchymal Stem Cells, Transplantation, Sulfur Mustard, Airway Remodeling
  • Karim Shams, Mahshid Saleh, Aliakbar Movassaghpour, Parvin Akbarzadeh, Zahra Molaeipour Page 127
    Objective
    Bone marrow mesenchymal stem cells (BMMSCs) reside in the bone marrow and control the process of hematopoiesis. They are an excellent instrument for regenerative treatment and co-culture with hematopoietic stem cells (HSCs).
    Materials And Methods
    In this experimental study, K562 cell lines were either treated with butyric acid and co-cultured with MSCs, or cultivated in a conditioned medium from MSCs plus butyric acid for erythroid differentiation. We used the trypan blue dye exclusion assay to determine cell counts and viability in each group. For each group, we separately assessed erythroid differentiation of the K562 cell line with Giemsa stain under light microscopy, expression of specific markers of erythroid cells by flowcytometry, and erythroidspecific gene expressions by real-time polymerase chain reaction (RT-PCR).
    Results
    There was enhandced erythroid differentiation of K562 cells with butyric acid compared to the K562 cell line co-cultured with MSCs and butyric acid. Erythroid differentiation of the K562 cell line cultivated in conditioned medium with butyric acid was higher than the K562 cell line co-cultured with MSCs and butyric acid, but less than K562 cell line treated with butyric acid only.
    Conclusion
    Our results showed that MSCs significantly suppressed erythropoiesis. Therefore, MSCs would not be a suitable optimal treatment strategy for patients with erythroid leukemia.
    Keywords: Mesenchymal Stem Cells, K562 Cells, Erythroid Differentiation
  • Behdokht Bahrami, Ahmad Hosseini, Abdol, Rasoul Talei, Abbas Ghaderi, Mahboobeh Razmkhah Page 137
    Objective
    Adipose derived stem cells (ASCs), as one of the important stromal cells in the tumor microenvironment, are determined with immunomodulatory effects. The principle aim of this study was to evaluate the immunosuppressive effects of ASCs on natural killer (NK) cells.
    Materials And Methods
    In this experimental study, we assessed the expressions of indolamine 2, 3-dioxygenase (IDO1), IDO2 and human leukocyte antigen-G5 (HLA-G5) in ASCs isolated from breast cancer patients with different stages as well as normal individuals, using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Immunomodulatory effects of ASCs on the expression of CD16, CD56, CD69, NKG2D, NKp30, NKG2A and NKp44 was also assessed in peripheral blood lymphocytes (PBLs) by flow-cytometry.
    Results
    Our result showed that IDO1, IDO2 and HLA-G5 had higher mRNA expressions in ASCs isolated from breast cancer patients than those from normal individuals (P>0.05). mRNA expression of these molecules were higher in ASCs isolated from breast cancer patients with stage III tumors than those with stage II. The indirect culture of ASCs isolated from breast cancer patients and normal individuals with activated PBLs significantly reduced NKG2D and CD69 NK cells (P
    Conclusion
    Results of the present study suggest more evidences for the immunosuppression of ASCs on NK cells, providing conditions in favor of tumor immune evasion.
    Keywords: Mesenchymal Stem Cells, Immunosuppression, NK Cells, Breast Cancer
  • Sadiyeh Pari, Mohammad Hussein Abnosi, Reza Pakyari Page 146
    Objective
    We used sodium nitroprusside (SNP), a nitric oxide (NO) releasing molecule, to understand its effect on viability and proliferation of rat bone marrow mesenchymal stem cells (BM-MSCs).
    Materials And Methods
    This experimental study evaluated the viability and morphology of MSCs in the presence of SNP (100 to 2000 µM) at 1, 5, and 15 hours. We chose the 100, 1000, and 2000 µM concentrations of SNP for one hour exposure for further analyses. Cell proliferation was investigated by the colony forming assay and population doubling number (PDN). Na, K, and Ca2 levels as well as activities of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), aspartate transaminase (AST), and alanine transaminase (ALT) were measured.
    Results
    The viability of MSCs dose-dependently reduced from 750 µM at one hour and 250 µM at 5 and 15 hours. The 100 µM caused no change in viability, however we observed a reduction in the cytoplasmic area at 5 and 15 hours. This change was not observed at one hour. The one hour treatment with 100 µM of SNP reduced the mean colony numbers but not the diameter when the cells were incubated for 7 and 14 days. In addition, one hour treatment with 100 µM of SNP significantly reduced ALT, AST, and ALP activities whereas the activity of LDH increased when incubated for 24 hours. The same treatment caused an increase in Ca2 and reduction in Na content. The 1000 and 2000 µM concentrations reduced all the factors except Ca2 and LDH which increased.
    Conclusion
    The high dose of SNP, even for a short time, was toxic. The low dose was safe with respect to viability and proliferation, especially over a short time. However elevated LDH activity might increase anaerobic metabolism.
    Keywords: Cell Survival, Lactate Dehydrogenase, Mesenchymal Stem Cells, Morphology, Nitroprusside
  • Mohsen Emadedin, Narges Labibzadeh, Roghayeh Fazeli, Fatemeh Mohseni, Seyedeh Esmat Hosseini, Reza Moghadassali, Soura Mardpour, Vajiheh Azimian, Alireza Goodarzi, Maede Ghorbani Liastani, Ali Mirazimi Bafghi, Mohamadreza Baghaban Eslaminejad, Nasser Aghdami Page 159
    Objective
    Nonunion is defined as a minimum of a 9-month period of time since an injury with no visibly progressive signs of healing for 3 months. Recent studies show that application of mesenchymal stromal cells (MSCs) in the laboratory setting is effective for bone regeneration. Animal studies have shown that MSCs can be used to treat nonunions. For the first time in an Iranian population, the present study investigated the safety of MSC implantation to treat human lower limb long bone nonunion.
    Materials And Methods
    It is a prospective clinical trial for evaluating the safety of using autologus bone marrow derived mesenchymal stromal cells for treating nonunion. Orthopedic surgeons evaluated 12 patients with lower limb long bone nonunion for participation in this study. From these, 5 complied with the eligibility criteria and received MSCs. Under fluoroscopic guidance, patients received a one-time implantation of 20-50×106 MSCs into the nonunion site. All patients were followed by anterior-posterior and lateral X-rays from the affected limb, in addition to hematological, biochemical, and serological laboratory tests obtained before and 1, 3, 6, and 12 months after the implantation. Possible adverse effects that included local or systemic, serious or non-serious, and related or unrelated effects were recorded during this time period.
    Results
    From a safety perspective, all patients tolerated the MSCs implantation during the 12 months of the trial. Three patients had evidence of bony union based on the after implantation Xrays.
    Conclusion
    The results have suggested that implantation of bone marrow-derived MSCs is a safe treatment for nonunion. A double-blind, controlled clinical trial is required to assess the efficacy of this treatment (Registration Number: NCT01206179).
    Keywords: Nonunion, Mesenchymal Stromal Cells, Autologous, Bone Marrow
  • Alireza Abdanipour, Ali Noori, Zadeh, Seyed Alireza Mesbah, Namin, Salar Bakhtiyari, Reza Nejatbakhsh Page 166
    The brain and spinal cord have a limited capacity for self-repair under damaged conditions. One of the best options to overcome these limitations involves the use of phytochemicals as potential therapeutic agents. In this study, we have aimed to investigate the effects of di-(2-ethylhexyl) phthalate (DEHP) on hippocampus-derived neural stem cells (NSCs) proliferation to search phytochemical candidates for possible treatment of neurological diseases using endogenous capacity. In this experimental study, neonatal rat hippocampus-derived NSCs were cultured and treated with various concentrations of DEHP (0, 100, 200, 400 and 600 µM) and Cirsium vulgare (C. vulgare) hydroethanolic extract (0, 200, 400, 600, 800 and 1000 µg/ml) for 48 hours under in vitro conditions. Cell proliferation rates and quantitative Sox2 gene expression were evaluated using MTT assay and real-time reverse transcription polymerase chain reaction (RT-PCR). We observed the highest average growth rate in the 400 µM DEHP and 800 µg/ml C. vulgare extract treated groups. Sox2 expression in the DEHP-treated NSCs significantly increased compared to the control group. Gas chromatography/mass spectrometry (GC/ MS) results demonstrated that the active ingredients that naturally occurred in the C. vulgare hydroethanolic extract were 2-ethyl-1-hexanamine, n-heptacosane, 1-cyclopentanecarboxylic acid, 1-heptadecanamine, 2,6-octadien-1-ol,2,6,10,14,18,22-tetracosahexaene, and DEHP. DEHP profoundly stimulated NSCs proliferation through Sox2 gene overexpression. These results provide and opportunity for further use of the C. vulgure phytochemicals for prevention and/or treatment of neurological diseases via phytochemical mediated-proliferation of endogenous adult NSCs.
    Keywords: Proliferation, Sox2, Neural Stem Cells