فهرست مطالب

Iranian Journal of Materials science and Engineering
Volume:4 Issue: 1, Oct 2007

  • تاریخ انتشار: 1386/05/11
  • تعداد عناوین: 7
|
  • THEORETICAL AND EXPERIMENTAL EVALUATION OF DISLOCATION DENSITY IN A WORKPIECE AFTER FORMING
    A. Karimi Taheri, Kazeminezhad, A. Kiet Tieu Page 1
    The theoretical calculation of dislocation density in different regions of a deformed workpiece of 99.99% pure copper has been carried out using different procedures consisting of Finite Element Method (FEM) and hardness measurement. To assess the validity of the results pertaining to these procedures, the dislocation density is experimentally measured utilizing the Differential Scanning Calorimetry (DSC). Comparing the predicted and experimental results, it was found that the average error in prediction of the dislocation density by the hardness measurement and FEM is 12% and 2.5%, respectively. Also, for further confirmation of the evaluated dislocation density of each region of the deformed workpiece, the annealing process was carried out and in the region of higher dislocation density, a finer grain size was observed.
  • COMPARISON OF HIGH TEMPERATURE PROPERTIES AND THERMAL SHOCK OF AUSTEMPERED DUCTILE IRONS (ADI) WITH THOSE OF PEARLITIC DUCTILE CAST IRONS
    M. Adjabshiri, S. Sharafi Page 2
    Strength at elevated temperatures and thermal shock resistance of austempered ductile irons at high temperatures has been less intentioned, because of instability of ausferrite phase. In this research the tensile properties of this iron and pearlitic ductile cast iron have been investigated by short time high temperature tensile tests. Also thermal shock tests were done at the molten lead bath at 1000 􀁱C. In these experiments, at first samples were immersed partially in the molten lead bath for 25 seconds and then either cooled in air or quenched in water. Results of short time high temperature tensile and thermal shock tests showed that ADI samples have higher strength and shock resistance than the pearlitic ductile samples.
  • STATIC RECRYSTALLIZATION BEHAVIOR OF A SiC - PARTICLE REINFORCED ALUMINUM ALLOY AFTER HOT DEFORMATION
    A. Razaghian, T. Chandra Page 3
    Static recrystallization (SRX) behavior of a composite based 7075 Aluminum alloy reinforced with SiC particles was studied during annealing the deformed samples at high temperatures. The results showed an absence of SRX in the samples annealed after hot working at the same deformation temperature, however, a rise in annealing temperature of 100-1500 􀁱C above that the deformation temperature led to full recrystallization. This can be ascribed to the relatively moderate dynamic recovery and the presence of dispersions which stabilize the substructure. Particle stimulated nucleation (PSN) had a significant effect on the grain size in deformed samples at low temperature, but no PSN was observed in samples strained at high temperatures. The possible cause might be that at high temperature the dislocations can be annihilated by climb process around the particles together with the absence of deformation zone for nucleating the recrystallization.
  • DIRECT REDUCTION OF SARCHESHME COPPER SULFIDE CONCENTRATE WITH CARBON IN THE PRESENCE OF LIME
    Jalil Vahdati Khaki, Salman Hadji Soleimani, Mohsen Moosavi Nejad Page 4
    The direct reduction of copper sulfide concentrate from Iranian Sarcheshme deposits with carbon in the presence of lime was investigated in the temperature range of 800-1000 ºC. The reduction kinetics was determined by means of weight loss measurements. It was found that the rate of reaction increased considerably with increasing the temperature. The kinetics was also improved when large excesses of lime and carbon were present in the mixture. The effects of catalytic additives of Na2CO3 and K2CO3 were also investigated. It was realized that the rate of reaction increased by higher concentrations of additives. X-ray diffraction analysis of reduced samples revealed that sulfur was fixed as solid CaS, and metallic copper was formed.
  • EVALUATION OF WEAR AND IMPACT PROPERTIES OF GRINDING BALLS USED IN SARCHESHMEH COPPER PLANT
    G. H. Akbari, M. A. Sheikhi Page 5
    Ball mills are used in the last stage of ore processing for grinding raw materials. Forged 70Cr2 alloy steel and Austempered Ductile Iron (ADI) balls are materials from which grinding balls are made for Sarcheshmeh Copper Plant (SCP) ball mills. In the present study wear and impact properties of these two kinds of balls have been investigated. Some balls randomly were selected as samples. They were cut to investigate the cross section under optical and scanning electron microscopes. The microstructure of the sample balls was studied and quantitative measurements of microstructural features were performed. The hardness of different parts of cross sections of balls was measured. The wear resistance of the balls was measured by Pin on Disc method. Repeated dropt test was employed to evaluate impact resistance of the balls. The microstructure of ADI balls consisted of bianitic matrix with graphite nodules and some retained austenite and martensite. Micro cracks and porosities in the cast structure were frequently observed. In the case of forged steel balls the microstructure composed of tempered martensite in outer area and bianitic structure with some tempered martensite in central areas. The wear and impact resistance of forged steel balls were markedly higher than those of ADI balls. The difference was consistent with the differences between the microstructures of the two kinds of balls. Cast structure with microcracks and shrinkage porosities in ADI balls gives rise to lower impact resistance.
  • NEURAL NETWORK PREDICTION OF THE EFFECT OF SEMISOLID METAL (SSM) PROCESSING PARAMETERS ON PARTICLE SIZE AND SHAPE FACTOR OF PRIMARY α-Al ALUMINUM ALLOY A356.0.
    M. Ghalambaz, M. Shahmiri, Y. H. K. Kharazi Page 6
    Problems such as the difficulty of the selection of processing parameters and the large quantity of experimental work exist in the morphological evolutions of Semisolid Metal (SSM) processing. In order to deal with these existing problems, and to identify the effect of the processing parameters, (i.e. shearing rate-time-temperature) combinations on particle size and shape factor, based on experimental investigation, the Artificial Neural Network (ANN) was applied to predict particle size and shape factor SSM processed Aluminum A.356.0 alloy. The results clearly demonstrated that, the ANN with 2 hidden layers and topology (4, 2) can predict the shape factor and the particle size with high accuracy of 94%.The sensivity analysis also revealed that shear rate and solid fraction had the largest effect on shape factor and particle size, respectively. The shear rate had a reverse effect on particle size.
  • LOW TEMPERATURE SYNTHESIS OF NANOCRYSTALLINE MgAl2O4 SPINEL VIA SUCROSE PROCESS
    B. Alinejad, H. Sarpoolaky, A. Beitollahi, S. Afshar Page 7
    Nanocrystalline MgAl2O4 spinel powder was synthesized using metal nitrates and a polymer matrix-based composed of sucrose and polyvinyl alcohol (PVA). The precursor and the calcined powders were characterized by simultaneous thermal analysis (STA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). According to XRD results, the inceptive formation temperature of spinel via this technique was between 600°C and 700°C. The average crystallite size of calcined powder at 800°C for 2h was in the range of 8-12nm. In addition, SEM micrograph showed that the synthesized powder had a spherical morphology.