فهرست مطالب

Iranian Journal of Materials science and Engineering
Volume:5 Issue: 4, Dec 2008

  • تاریخ انتشار: 1387/11/11
  • تعداد عناوین: 7
|
  • A T.E.M INVESTIGATION OF THE MECHANISM OF EARLY STAGE ORDERING IN THE INTERMETTALIC COMPOUND PT2FECU
    M. Shahmiri, S. Murphy Page 1
    The microstructural features of the early stage of ordering of the intermetallic compound Pt2FeCu have been examined using optical and transmission electron microscopy in conjunction with X-ray diffraction technique. It was found that the compound has similar morphological alteration to that of FePt in which the ordering cannot be suppressed by rapid quenching. The early stage of ordering transformation was initiated at temperatures above the critical value of 1178 oC, by a homogeneous nucleation of the intermediate short range ordered particles and ultra rapid directional-induced heterogeneous growth (burst type). As the result of these combined mechanisms, twin –related ordered domains have been formed which in turn minimize the strains produced by ordering reaction in polycrystalline material. The individual grain was divided up by different sizes of twin-related ordered domain bonded with {101} habit planes.
  • NON-DESTRUCTIVE THERMAL DAMAGE CHARACTERIZATION OF CORDIERITE-MULLITE REFRACTORIES
    M. Ghassemi Kakroudi Page 2
    Refractory materials containing cordierite (2MgO.2Al2O3.5SiO2) and mullite (3Al2O3.2SiO2) are used as support in furnaces, because of their low thermal expansion properties which confer them a very good ability to thermal shock resistance. Composed of two phases presenting very different CTE (1.5–3×10-6 for cordierite and 4–6×10-6 K-1 for mullite), these materials can develop damage during thermal cycling due to internal stresses. The resulting network of microcracks is well known to improved thermal shock resistance of materials, since it usually involves a significant decrease in their elastic properties. This paper is devoted to the characterisation of the damage generated by this CTE mismatch, thanks to the application of a specific ultrasonic device at high temperature.
  • SOLIDIFICATION MODELING AND DENDRITE STRUCTURE ANALYSIS IN A HORIZONTAL CONTINUOUSLY CAST BRASS BILLET
    S. Kianfar, S. H. Seyedein, M. R.Aboutalebi Page 3
    The horizontal continuous casting process has received a significant attention for near net shape casting of non ferrous metals and alloys. Numerical Simulation has been widely used for process design and optimization of continuous casting process. In the present study, a 3-dimensional heat flow model was developed to simulate the heat transfer and solidification in a horizontal billet continuous casting system in which the air gap formation and its effect on heat extraction rate from solidifying billet was also considered. In order to test the developed model, it was run to simulate the heat transfer and solidification for an industrial billet caster. The predicted temperature distribution within the mold and billet was compared with those measured on the industrial caster in which a good agreement was obtained. Finally, parametric studies were carried out by validated model to evaluate the effects of different parameters on solidification profile and temperature distribution within the model brass billet. The microstructure of cast billet was analyzed to determine the secondary dendrite arm spacing (SDAS) under different cooling conditions. Based on measured SDAS and predicted solidification rate a correlation between SDAS and cooling rate was proposed for continuously cast brass billet.
  • TRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC
    H. Shahmir, M. Nili Ahmadabadi, F. Naghdi Page 4
    In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at.% Ni alloy were annealed at 673 K and 773 K for 30 and 60 min after 15% cold rolling. It was found that the transformation characteristics of these alloys are sensitive to annealing treatment and composition. The temperature range of transformation is broadened during cold working and after subsequent annealing, the intermediate phase was appeared. The peaks become sharper and close together on each cooling and heating cycle with increasing annealing temperature and time
  • SIGMA PHASE FORMATION IN A HEAT TREATED NI-50CR COATING APPLIED BY HVOF PROCESS ON A STAINLESS STEEL
    J. Saaedi, H. Arabi, Sh. Mirdamadi, Th. W. Coyle Page 5
    Two different coating microstructures of Ni-50Cr alloy were obtained on a stainless steel substrate by changing combustion characteristics of a high velocity oxy-fuel (HVOF) process and the size distribution of feed powder during coating process. Use of the finer feed powder and leaner fuel in oxygen/fuel ratio (i.e. using a ratio much less than stoichiometric ratio) led to formation of an extremely dense coating with high oxide content. Heat treating of this coating at 650ºC for 4 hours caused the formation of an intermetallic sigma phase having Cr7Ni3 stoichiometry. Formation of this phase has been reported occasionally in thin films not in thermal spray coatings, as reported for the first time in this research. In addition no sigma phase was detected in the HVOF as-deposited coating with low oxide content after heat treatment of the samples. Therefore, due to the limited number of papers available in the subject of formation of phase in either Ni-Cr bulk alloys or coatings, it is considered appropriate to show up a case in this field. In this work, the formation of sigma phase in Ni-50Cr coating deposited by HVOF technique and heat treated at 650ºC was discussed and then the coating was characterized.
  • EFFECT OF SILICON CONTENT ON THE STRAIN HARDENING OF DUAL-PHASE STEELS
    A.Nouri, Sh.Kheirandish, H. Saghafian Page 6
    In the current work, the strain hardening behavior of dual-phase steels with different silicon content (0.34- 2.26 Wt. %) was examined using the modified Crussard-Jaoul analysis. It was shown that these dual-phase steels deform in two stages over a uniform strain range. Each stage exhibited a different strain hardening exponent varying with silicon content. At the first stage, work hardening exponent remind significantly constant, while during the second stage, it decreased with increasing silicon content from 0.34% to 1.51% and then increased for the higher silicon contents (1.51% to 2.26%). It was found that the strain hardening behavior of these steels was predominantly affected by the volume fraction of martensite at low silicon contet and the ferrite strengthening induced by silicon at the higher silicon content. The effect of silicon content on the volume fraction of martensite and tensile properties were also considered.
  • STUDY ON VANADIUM CARBIDE COATING FORMATION ON AISI L2 STEEL BY THERMO-REACTIVE DEPOSITION TECHNIQUE
    M. Mossanef, M. Soltanieh Page 7
    The possibility of vanadium carbide coating formation on AISI L2 steel was studied in molten salt bath containing 33 wt% NaCl- 67 wt% CaCl2. In this research, the effects of time, temperature and bath composition on growing layer thickness were studied. The vanadium carbide coating treatment was performed in the NaCl-CaCl2 bath at 1173, 1273 and 1373 K temperatures for 3, 6, 9 hours and in bath containing 5, 10, 15, 25 wt% ferrovanadium. The presence of VC formed on the surface of the steel substrate was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analysis. The layer thickness of vanadium carbide and surface hardness ranged between 4.8 to 25.7 µm and 2645 to 3600 HV, respectively. The kinetics of layer growth was analyzed by measuring the depth of vanadium carbide layer as a function of time and temperature. The mean activation energy for the process is estimated to be 133 kJ/ mol.