فهرست مطالب

Iranian Journal of Materials science and Engineering
Volume:9 Issue: 2, Jun 2012

  • تاریخ انتشار: 1391/04/22
  • تعداد عناوین: 7
|
  • M. R. Zamanzad, Ghavidel, K. Raeissi, A. Saatchi Page 1
    Nickel was electrodeposited onto copper substrates with high {111} and {400} peak intensities. The grain size of coatings deposited onto the copper substrate with a higher {111} peak intensity was finer. Spheroidized pyramid morphology was obtained at low current densities on both copper substrates. By increasing the deposition current density, grain size of the coating was increased for both substrates and eventually a mixed morphology of pyramids and blocks was appeared without further increase in grain size. This decreased the anodic exchange current density probably due to the decrease of surface roughness and led to a lower corrosion rate.
    Keywords: Ni Nanocrystalline, Electrodeposition, Texture, Morphology, Corrosion
  • A. Salimi, M. Zadshakoyan, A. Ozdemir, E. Seidi Page 15
    In automation flexible manufacturing systems, tool wear detection during the cutting process is one of the most important considerations. This study presents an intelligent system for online tool condition monitoring in drilling process. In this paper, analytical and empirical models have been used to predict the thrust and cutting forces on the lip and chisel edges of a new drill. Also an empirical model is used to estimate tool wear rate and force values on the edges of the worn drill. By using of the block diagram of machine tool drives, the changes in the feed and spindle motor currents are simulated, as wear rate increases. To predict tool wear rate in drill, Fuzzy logic capabilities have been used to develop intelligent system. The simulated results presented in MATLAB software show the effectiveness of the proposed system for on-line drill wear monitoring.
    Keywords: Tool wear condition monitoring, current signal, Fuzzy logic
  • Karmous Mohamed Salah Page 30
    Atomistic simulations are carried out for zeolite with ABW framework. The structure is modeled and force field simulations are preformed to investigate its elastic properties, bulk, shear modulus and auxeticity. Bulk moduli (Ks), Shear moduli (G), and Poissons ratios (ν) were found to be Ks=79.71725 GPa, G=16.93265 GPa, νxy = -0.2207, νxz= -0.5730, νyx= -0.71717, νyz=0.87013, νzx= -0.33097 and νzy=1.54568 for ABW; the negative value of Poisson’s ratios reflects an auxetic behavior of material. An evaluation of the directional young’s moduli shows that the compressibility of ABW is not uniform along [100], [010] and [001] axes. All calculations were performed using GULP program.
    Keywords: elastic constant, auxetic, zeolite, GULP, simulation, energy minimization
  • M. Ghamari, B. Mirhadi Page 36
    Glassy samples with xTiO2. 3SiO2. Na2O composition that (8≤x≤40) (molar) were casted in refractory steel molds after melting at air as parallel palates. After polishing and getting to desire thickness, UV-VIS spectrometry in 200 -1100 nm was measured on samples. Glass density was measured by a sensitive micro balance and was found that by increasing titanium dioxide of glasses, glass density increases. Results from UV-VIS spectroscopy show that increase of titanium dioxide decreases light transmission and this value reaches zero for sample with 40 molar percent of titanium dioxide. One reason of this reduction is formation of crystalline phase in glass, in which, by increasing titanium content crystalline phase will be increased, results of X-ray diffraction and electron microscopy confirm this claim.
    Keywords: glass, spectroscopy, titanium dioxide, optical transmission
  • S. Safi, R. Yazdani Rad, A. Kazemzade, Y. Safaei Naeini, F. Khorasanizadeh Page 41
    C-SiC composites with carbon-based mesocarbon microbeads (MCMB) preforms are new type of highpreformance and high-temperature structural materials for aerospace applications. In this study MCMB-SiC composites with high density (2.41 g.cm-3) and high bending strength (210 MPa,) was prepared by cold isostatic press of mixed mesophase carbon powder derived from mesophase pitch with different amount (0, 2.5, 5%) nano SiC particles. All samples were carbonized under graphite bed until 1000 °C and finally liquid silicon infiltration (LSI). Microstructure observations resultant samples were performed by scanning electron microscopy and transition electron microscopy (SEM & TEM). Density, porosity and bending strength of final samples were also measured and calculated. Results indicates that the density of samples with nano additive increased significantly in compare to the free nano additives samples.
    Keywords: Nano SiC, Composite, Liquid Silicon Infiltration (LSI), Mesocarbon Microbeads (MCMB)
  • H. Yaghoubi, H. Sarpoolaky, F. Golestanifard, A. Souri Page 50
    Colloidal silica bonded refractory castables have been developed recently. It was found that colloidal silica is one of the best binders can substitute other binders such as cement in No Cement Castable (NCC) and Ultra Low Cement Castable (ULCC) refractories. Also composition of colloidal silica with appropriate additives resulted in a gel form which makes the initial strength. Moreover, the nano size silica particles are extremely reactive in high alumina castables and may encourage the mullite formation in the microstructure. In the current study, four castables were prepared. The sample containing 6wt % microsilica was a reference, then microsilica was replaced by different amount of colloidal silica (2.5, 5, 7.5 wt %). Silica and water content was kept constant. It’s concluded that the castables containing the optimum amount of silica sol shows remarkable increase in both castable fluidity and mechanical strength (CCS and MOR) in dried and sintered state. It was also found that nanosilica particles increase the rate of needle-shaped mullite formation during sintering at 1400°C. According to FTIR results, the addition of Calcium Aluminate Cement (CAC) to the silica sol may be responsible for the increment of siloxane bridges (Si-O-Si).
    Keywords: Refractory castable, Colloidal silica, Gel, Siloxane bridge
  • M. R. Parsa, M. Soltanieh Page 59
    In this research, the nickel oxide was dissolved in cryolite at temperatures of 880, 940 and 1000°C. In order to reduce the nickel oxide, aluminum was added to the salt. Simultaneously the nickel oxide was reduced and Al3Ni2 intermetallic compound was formed. In the duration intervals of 2.5-40 minutes samples of the salt and metallic phases were taken. The variation of the nickel content in metallic and salt samples was determined by the AAS. The results indicate that increasing the temperature and duration has a positive effect on the reduction process and Al3Ni2 intermetallic compound formation. The nickel content in the metallic sample has its highest amount at 1000°C in 10 minutes. Furthermore, practical results of the studies of nickel content variations in metallic and salt samples confirm the data obtained from theoretical calculations.
    Keywords: Al3Ni2 intermetallic compounds, Analytical data, Mass equilibrium