فهرست مطالب

Iranian Journal of Materials science and Engineering
Volume:14 Issue: 3, Sep 2017

  • تاریخ انتشار: 1396/06/14
  • تعداد عناوین: 8
|
  • R. Hasanzadeh, T. Azdast, R. Eungkee Lee, A. Afsari Ghazi Pages 1-10
    Material selection is a main purpose in design process and plays an important role in desired performance of the products for diverse engineering applications. In order to solve material selection problem, multi criteria decision making (MCDM) methods can be used as an applicable tool. Bumper beam is one of the most important components of bumper system in absorbing energy. Therefore, selecting the best material that has the highest degree of satisfaction is necessary. In the present study, six polymeric nanocomposite materials were injection molded and considered as material alternatives. Criteria weighting was carried out through analytical hierarchy process (AHP) and Entropy methods. Selecting the most appropriate material was applied using technique for order preference by similarity to ideal solution (TOPSIS) and the multi-objective optimization on the basis of ratio analysis (MOORA) methods respect to the considered criteria. Criteria weighting results illustrated that impact and tensile strengths are the most important criteria using AHP and Entropy methods, respectively. Results of ranking alternatives indicated that polycarbonate containing 0.5 wt% nano Al2O3 is the most appropriate material for automotive bumper beam due to its high impact and tensile strengths in addition to its low cost of raw material. Also, the sensitivity analysis was performed to verify the selection criteria and the results as well.
    Keywords: Thermoplastic, Nanocomposite, Bumper beam, Nanoparticle, Mechanical properties
  • B.Y.R. Surnam Audit, A. Soopee Pages 11-20
    In this study the use titanium and tungsten as alternatives to the noble metals in the jewellery industry was investigated. The degradation of titanium and tungsten were compared to that of gold, used as reference. Alternate immersion tests were performed in 3.5% sodium chloride and artificial perspiration. The metals’ abrasion resistance with respect to textile fabrics was determined.
    In general, there is around 30% difference in pit density for titanium and tungsten as compared to that of gold. Pit depth and pit diameter showed a similar trend. From the abrasive test performed, it was observed that titanium and tungsten had insignificant changes in the surface reflectivity with time. Hence, it was deduced that titanium and tungsten products would have longer maintenance intervals than that of gold. New tools and techniques, however, would be required by jewellers to work with titanium and tungsten.
    Keywords: gold, titanium, tungsten, corrosion, accelerated tests, pitting, abrasion, abrasive test, reflectivity, jewellery
  • N. Nikoogoftar, S. H. Razavi, M. Ghanbari Pages 21-33
    In this research, the effect of annealing and aging temperature as well as the effect of quenching media on the microstructure, hardness and dry sliding wear behavior of Ti-6Al-4V alloy has been studied. Cylindrical samples with the diameter of 10 mm and the height of 20mm were solutionized at 930˚C and 1060˚C for 600 seconds and then were quenched in the cold water and in the air. The samples were aged at different temperature of 480˚C, 550˚C and 610˚C for 360 s to increase the hardness. Heat treated samples were tested using standard pin-on-disc test machine at the applied loads of 100, 150 and 200 N. Microstructural investigations using scanning electron microscope revealed that for the samples solutionized at 930˚C and quenched in the water, the microstructure is composed of primary α and high volume fraction of martensitic α΄ phase with fine precipitated of β between martensitic lathes. In the case of air cooled samples, transformed β has also been appeared in the vicinity of primary α. For the samples solutionized at 1060˚C and quenched in the water, fully martensitic micro structure with fine β precipitates was observed. For the sample solutionized at 1060˚C and air quenched, plate like α and lamellar grain boundary β were detected. The maximum hardness value relates to the sample solutionized at 1060˚C and quenched in water which is equal to 433 HV. Different wear mechanisms, including oxidative wear, scratch, and delamination occurred at the worn surfaces at different applied loads. For the samples quenched in the water, the oxidative wear mechanism governing at low applied load and oxide debris was observed as separate or compacted particles which formed in the contact between pin and steel counter face detached from the sample. At higher applied loads, delamination and scratch mechanism was also observed and metallic plate like debris was detached from the sample. Mechanically mixed layer (MML) was formed on the surface of the pin at high applied loads and for the samples with low hardness value adhesion marks were also revealed on the steel disc. The minimum weight loss in the wear test is related to the sample quenched from the 1060ºC in the cold water and aged at 550 ºC .
    Keywords: Ti-6Al-4V alloy, Tribology, Heat treatment, Microstructure, Hardness
  • M. Divandari Pages 34-47
    This paper investigates the difference between thickness of zinc-based alloys oxide films in dynamic condition using the oxide-metal-oxide (OMO) sandwich method and static condition by theoretical calculations. In dynamic condition, the thickness of the oxide film in the OMO sandwich sample was characterized by scanning electron microscopy (SEM). In the static condition, the thickness and type of the oxide films were studied based on thermodynamic and kinetic estimations. The results showed that the oxide film thickness in molten Zn4Al and ZA27 alloys using OMO sandwich method was estimated to be in the range of 70-200 nm and 30-100 nm, respectively. However, the thickness of oxide films in the static oxidation based on the theoretical calculations, regardless of melt chemical composition, were about 2-5 nm.
    Keywords: Zn alloys, OMO sandwich method, Dynamic oxidation, Static oxidation, Surface oxide film
  • A. Tadjarodi, M. Imani, A. Iraji Zad Pages 48-53
    In this work, we report the synthesis of silver decamolybdate, Ag6Mo10O33, nanostructure by a simple mechanohemical process followed by calcination treatment using acetamide as driving agent. Morphological study by scanning electron microscopy (SEM) images revealed bundles of rods grown closely together with an average diameter of 92 nm for Ag6Mo10O33 sample. Ni-substituted Ag6Mo10O33 compound was prepared via introducing nickel cation to precursor system in mechanical milling step. The particle size decreased to 87 nm by incorporating nickel units in substituted polymolybdate. It was concluded that the suitable selection of reagents can direct solid phase reaction towards producing nanostructured products. This technique is easy and simple for preparation of various mixed metal oxides without using any solvents and or complex procedures. In addition, the photocatalytic activity of the prepared products was studied on the removal of 4-nitro phenol (4-NP) as organic pollutant from water. The obtained results were also discussed in detail.
    Keywords: Mechanochemical reaction, Polyoxometalate, Nanostructure, Photocatalytic characteristic
  • A. Jafari Tadi, S.R. Hosseini, M. Naderi Semiromi Pages 54-63
    Influence of formation of surface nano/ultrafine structure using deep rolling on plasma nitriding and tribological properties of the AISI 316L stainless steel was investigated. Initially, the deep rolling process was carried out on the bar-shaped specimens at 15 cycles with 0.2 mm/s longitudinal rate and 22.4 rpm bar rotation. Then, plasma nitriding treatment was applied on the as-received and deep rolled kinds at 450 °C and H2-25% Vol. N2 gas mixture for 5­ h. Surface micro-hardness and un-lubricated pin-on-ring sliding wear tests were carried out on the as-received, deep rolled, plasma nitrided and deep rolled-plasma nitrided kinds. Results revealed that deep rolled-plasma nitrided kind is shown the highest wear resistance than the others, due to the further increased surface hardness achieved via the combined process.
    Keywords: austenitic stainless steel, deep rolling, plasma nitriding, tribological properties
  • M. Nouri, P. Alizadeh, M. Tavoosi Pages 64-75
    In this study, the crystallization behavior of a 65GeO2-15PbO-10MgF2-10MgO glass (prepared by the conventional melt quenching technique) has been investigated. The microstructure and crystallization behaviors of this glass were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), non-isothermal differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that a fully glassy phase can successfully be prepared by the conventional melt quenching technique exhibiting one-stage crystallization on heating, i.e., the glassy phase transforms into crystalline MgGeO3 and Pb5GeO7 phases. The activation energy for the crystallization, evaluated from the Kissinger equation, was approximately 202±5 kJ/mole using the peak temperature of the exothermic reaction. The Avrami exponent or reaction order, n, indicates the nucleation rate in this glass to increase with time and the crystallization to be governed by a three-dimensional interface-controlled growth.
    Keywords: Lead-germanate glass, Crystallization, Nucleation, Growth, Kinetic
  • H. Torkamani, H. Rashvand, Sh. Raygan, J. Rassizadehghani, Y. Palizdar, C. Garcia Mateo, D. San Martin Pages 76-85
    In industry, the cost of production is an important factor and it is preferred to use conventional and low cost procedures for producing the parts. Heat treatment cycles and alloying additions are the key factors affecting the microstructure and mechanical properties of the cast steels. In this study an attempt was made to evaluate the influence of minor Mo addition on the microstructure and mechanical properties of conventionally heat treated cast micro-alloyed steels. The results of Jominy and dilatometry tests and also microstructural examinations revealed that Mo could effectively increase the hardenability of the investigated steel and change the microstructure features of the air-cooled samples. Acicular microstructure was the consequence of increasing the hardenability in Mo-added steel. Besides, it was found that Mo could greatly affect the isothermal bainitic transformation and higher fraction of martensite after cooling (from isothermal temperature) was due to the Mo addition. The results of impact test indicated that the microstructure obtained in air-cooled Mo-added steel led to better impact toughness (28J) in comparison with the base steel (23J). Moreover, Mo-added steel possessed higher hardness (291HV), yield (524MPa) and tensile (1108MPa) strengths compared to the base one.
    Keywords: Mo addition, conventional heat treatment, cast microalloyed steel, mechanical properties