فهرست مطالب

Iranian Journal of Materials science and Engineering
Volume:2 Issue: 2, Jun 2005

  • تاریخ انتشار: 1384/02/11
  • تعداد عناوین: 7
|
  • THERMAL SHOCK OF REFRACTORIES
    Chandler H.W Page 1
    Being brittle and having low thermal conductivity, refractories suffer damage and sometimes fail in service as a result of thermal shock. While the approach of those making fine-grained technical ceramics is to make their products sufficiently strong to withstand thermal stresses; the refractory technologist is more cunning. He uses, often little known, devices to provide resistance to thermal shock that minimise but do not eliminate damage to the component. In this paper the basic equations of thermal conduction and elasticity are presented and followed by some immediate results that should guide the designer of components subject to severe thermal environments. The influence of size and shape of the refractory components is then discussed along with ways in which refractory producers can engineer the thermal and mechanical properties. In particular, the methods used to tailor fracture behavior to optimize the thermal shock resistance are treated in some detail.
  • THE EFFECT OF ADDITION OF NAHF2 ON PHYSICOCHEMICAL AND MECHANICAL PROPERTIES OF APATITE CEMENTS
    Nojehdehyan H., Moztar Zadeh F., Mir Zadeh Hamid, Hesaraki S., Keyanpour, Rad M. Page 2
    The effect of addition of NaHF2 on the cement setting and the set mass has been studied as an initial step to determine how fluoride influences the characteristics of a calcium phosphate cement, consisting of tetracalcium phosphate [TTCP:Ca4 (PO4)2O] and dicalcium phosphate dihydrate [DCPD:CaHPO4.2H2O].NaHF2 [0-10% wt% of powder phase] has been dissolved in double distilled water and used as the liquid phase of the apatite cement (AC). Powder X-ray diffraction analysis and FTIR measurements revealed that fluoride was necessary in promoting the formation of the apatite phase. The setting time was decreased significantly by the addition of NaHF2from 0% to 6%, but increased resulted in the AC (8-10%). The set AC (2%) has the highest compressive strength and the lowest porosity.The dissolution rate of set AC in weak acid, pH 5.5, was decreased with the amount of added NaHF2 from 0% to 6% but increased in the set AC 8-10%.The formation of fluoroapatite in AC (6%) was provided the low solubility and good acid resistance which is necessary for dental application.SEM observation showed needle-like apatite crystal growth over particulate matrix surface, however the amount of non-reactive TTCP or DCPD particles decreased by the addition of NaHF2. The Ca/P ratio, which was determined by EDAX, increased significantly with the addition of NaHF2.
  • THE COMPARISON OF MECHANICAL PROPERTIES OF SINTERED?. QUARTZ SOLID SOLUTION AND GAHNITE GLASS - CERAMICS IN ZNO-AL2O3-SIO2 SYSTEM
    Eftekhari, Yekta B., Marghussian V.K Page 3
    The effect of precipitation of? .qss. and gahnite phases during heat treatment of glass frits in the ZnO-Al2O3-SiO2 system on the mechanical property of resulting glass-ceramic specimens were investigated. It was shown that gahnite glass-ceramics had higher bend strength and toughness values than? .qss. ones. The results are attributed to the higher modulus of elasticity as well as higher thermal expansion coefficient of gahnite relative to the residual glass phase.
  • STUDY OF THE OPTIMUM CALCINATION TEMPERATURE FOR THE SYNTHESIS OF STRONTIUM HEXAFERRITE MAGNETIC CERAMIC NANOPOWDER BY A SOL-GEL AUTO-COMBUSTION METHOD IN THE PRESENCE OF CATIONIC SURFACTANT
    Ghobeiti Hasab M., Seyyed Ebrahimi S.A., Badaee A. Page 4
    In this research the sol-gel auto-combustion method was used to prepare strontium hexaferrite nanopowder. A solution of distilled water, ferric and strontium nitrates, citric acid, trimethylamine, and n-decyltrimethylammonium bromide cationic surfactant, was heated to form a viscous gel. The gel was heated and then ignited automatically. As-burnt powder was calcined at temperatures from 700 to 900?C in air to obtain SrO.6Fe2O3 phase. The influence of the calcination temperature on the phase composition of the products has been investigated. X-ray diffraction confirmed the formation of single-phase strontium hexaferrite nanopowder at temperature of 800?C.
  • AN INVESTIGATION TO BAINITE FORMATION MORPHOLOGIES IN NI-CR BEARING LOW CARBON STEELS THROUGH THERMOMECHANICAL PROCESSING
    Dehghan Manshadi A., Zarei Hanzaki A., Golmahalleh O. Page 5
    The presence of bainite in the microstructure of steels to obtain a proper combination of strength and toughness has always been desired. The previous works however have shown that the presence of preferred bainite morphologies in the microstructure of any steel would not be readily accessible. In addition, the appearance of different bainite morphologies in the microstructure of any steel is dictated by different factors including the steel initial microstructure, austenitization characteristics, thermomechanical processing parameters and so on. Accordingly, in the present work, the effect of prior austenite grain size and the amount of austenite hot deformation on the bainite formation characteristics were investigated in 0.12C-2.5 Ni-1.2Cr steels. The results indicated that the prior austenite grain size and the amount of deformation in the austenite no-recrystallization region resulted in significant changes of the bainite formation kinetics and morphology.
  • THE KINETIC OF PRECIPITATION REACTIONS IN A RAPIDLY AGED HIGH ALLOY HIGH STRENGTH STEEL
    Morakabati M., Arabi H., Mirdamadi Sh., Abbasi S.M. Page 6
    This study was launched to investigate the effects of heating rate and aging parameters on the kinetic of precipitation reactions in a high alloy high strength steel having Ni, Co, Mo and Ti. For this purpose, as quenched specimens were subjected to three types of aging methods with different heating rates. These methods consisted of aging in Pb bath, salt bath, and furnace at different aging cycles. The kinetic of precipitation in each method was studied by hardness measurements and was described adequately by the Johnson-mehl-Avrami equation. Remarkable increase in hardness and its rate is observed when the rate of heating increases. The substantial increase in hardness of the specimens aged rapidly in salt & Pb baths, compared with those aged normally in furnace, seemed to be due to the formation of thermo elastic stresses during sudden expansion of the substance subjected to rapid heating. According to the results obtained in this research, increase in the Avrami constants, n & k, and decrease in the start time of transformation, ts, are associated with heating rate increasing. Analysis of the observed and calculated data for hardness using Arrhenius equation, shows that for the same amount of volume fraction of precipitates, the activation energy of precipitates decreased for f=25 and 50%, while at f=90 % it increased by increasing heating rate.
  • A STUDY ON SINTERING BEHAVIORS OF COPPER COATED SIC COMPOSITE POWDERS FABRICATED BY ELECTROLESS PLATING AND MECHANICAL PROPERTIES OF THE CONSOLIDATED COMPOSITES
    Paydar M.H., Fadaei R., Shariat M.H Page 7
    Copper coated SiC powders having three different amounts of copper, in the range of 20-60 wt%, were prepared via electroless coating process. The produced composite powders were uniaxially cold compressed and sintered at different temperatures and times under protective atmosphere. It was found that composite Cu/SiC powders and a relatively dense copper matrix composite with a uniform distribution of SiC reinforcing particles imbedded in copper matrix can be fabricated via electroless coating method followed by conventional cold pressing and sintering process. The results also show that SiC particles have a poor wettability with copper and so liquid phase sintering of the Cu/SiC composite powders did not enhance densification of the samples. Regarding this fact, optimum sintering temperatures, which depends on copper content, was determined to be in the range of 1050-1080?C.