فهرست مطالب

Iranian Journal of Electrical and Electronic Engineering
Volume:8 Issue: 3, Sep 2012

  • تاریخ انتشار: 1391/07/22
  • تعداد عناوین: 7
|
  • H. Jamali Rad, B. Abolhassani, M. Abdizadeh Pages 195-205
    In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects; however, they do not ensure an optimal performance for moving objects with acceleration. Towards an optimal performance, first, we derive a mathematical equation for the estimation of the minimal achievable power consumption by an optimal adaptive tracking interval management algorithm. This can be used as a benchmark for energy efficiency of these adaptive algorithms. Second, we describe our recently proposed energy efficient blind adaptive time interval management algorithm called Adaptive Hill Climbing (AHC) in more detail and explain how it tries to get closer to the derived optimal performance. Finally, we provide a comprehensive performance evaluation for the recent similar adaptive time interval management algorithms using computer simulations. The simulation results show that using the AHC algorithm, the network has a very good performance with the added advantage of getting 9 % closer to the calculated minimal achievable power consumption compared with that of the best previously proposed energy efficient adaptive time interval management algorithm.
    Keywords: Wireless sensor networks (WSNs), distributed target tracking, tracking interval, network lifetime, power efficiency
  • M. H. Refan, H. Valizade Pages 206-216
    Accurate and reliable time is necessary for financial and legal transactions, transportation, distribution systems, and many other applications. Time synchronization protocols such as NTP (the Network Time Protocol) have kept clocks of such applications synchronized to each other for many years. Nowadays there are many commercial GPS based NTP time server products at the market but they almost have a high price. In this paper we are going to use a low cost GPS engine to build a time server to provide time synchronization with accuracy of a few milliseconds. This time server is relatively very cheap and it can be used in almost all typical applications. We also proposed a software based NTP time server implemented in MATLAB as well.
    Keywords: Time synchronization, Time synchronization Protocols, NTP (the Network Time Protocol), GPS Timing, Computer network, Time Server
  • A. Abooee, M. R. Jahed Motlagh Pages 217-226
    This paper focuses on the tracking and synchronization problems of hyperchaotic systems based on active backstepping method. The method consists of a recursive approach that interlaces the choice of a Lyapunov function with the design of feedback control. First, a nonlinear recursive active backstepping control vector is designed to track any desired trajectory in hyperchaotic Wang system. Furthermore, this method is applied to achieve hyperchaos synchronization of two identical hyperchaotic Wang systems. Also, it is used to implement global asymptotic synchronization between hyperchaotic Wang system and hyperchaotic Rössler system. Numerical simulations have been employed to verify the effectiveness of the three designed active backstepping control vectors.
    Keywords: hyperchaotic system, identical synchronization, hyperchaos, backstepping methods, Lyapunov function, Rössler, Wang systems
  • M. Maboodi, M. Hassan Ashtari, M. Aliyari Shoorehdeli Pages 227-233
    This paper addresses the experimental identification of a servo actuator which is used in many industrial applications. Because the system consisted of electrical and mechanical components, the behavior of the system was nonlinear. In addition, the under load behavior of this servo was different. The load torque was considered as the input and a two input-one output model was presented for this servo actuator. Special focus was given in order to present a simple model for this servo actuator. The comparison between simulation and experimental results showed the effectiveness of the propose model. The model can be applied as a reference for characterizing different designs and future control strategies.
    Keywords: Servo, Actuator, Identification, Modeling, ARMAX
  • R. Mirzalou, A. Nabavi, Gh. Darvish Pages 234-242
    This paper presents a new ultra-wideband LNA which employs the complementary derivative superposition method in noise cancellation structure. A pMOS transistor in weak inversion region is employed for simultaneous second- and third-order distortion cancellation. Source-degeneration technique and two shunt inductors are added to improve the performance at high frequencies. The degeneration inductor resonates at fT/2 and realizes a new input matching technique that widens the bandwidth with decreasing its quality factor and input capacitance, while flattens the input resistance and also improves the 1dB Compression Point. The shunt inductors resonate at the center frequency of the band and improve the effective bandwidth of noise/distortion cancellation technique. This LNA has been designed in a 0.18-μm CMOS process and consumes 8.3 mA from 1.8 V power supply. The chip area is 0.55mm2. The noise figure and voltage gain are 4.48-5.18 dB and 13 dB, respectively. S11 is lower than -13.5 dB over 5.8–10.6 GHz and IIP3 is 14.5–17.5 dBm, IIP2 is 14–15.5 dBm. This technique improves IIP3 more than 9dB.
    Keywords: ultra, wideband (UWB), low, noise amplifier (LNA), noise cancellation, distortion cancellation, input matching
  • F. Tootoonchian, K. Abbaszadeh, M. Ardebili Pages 243-258
    Resolvers are widely used in electric driven systems especially in high precision servomechanisms. Both encapsulated and pancake resolvers suffer from a major drawback: static eccentricity (SE). This drawback causes a significant increase in resolver output position error (RPE) which could not be corrected electronically. To reduce RPE, this paper proposes a novel structure with axial flux. Proposed topology, design guidelines, optimization procedure and several key features to improve the sensitivity of axial flux resolver (AFR) against SE are studied. Furthermore, to minimize RPE an optimized design is attained. The machines are investigated in detail by using d-q model and 3D time stepping finite-element analysis. The results of theses two methods are compared and both prototype machines (proposed and optimized) are built. In order to evaluate proposed topologies, an experimental test setup is devised. Finally, the experimental results of the prototype machines verified the analysis results.
    Keywords: Resolver, Static eccentricity, axial flux, Optimization, Time, Stepping 3D, Finite Element Analysis (3D, FEA), d, q model
  • C. Nagarajan, M. Madheswaran Pages 259-267
    This paper presents a Closed Loop CLL-T (capacitor inductor inductor) Series Parallel Resonant Converter (SPRC) has been simulated and the performance is analysised. A three element CLL-T SPRC working under load independent operation (voltage type and current type load) is presented in this paper. The Steady state Stability Analysis of CLL-T SPRC has been developed using State Space technique and the regulation of output voltage is done by using Fuzzy controller. The simulation study indicates the superiority of fuzzy control over the conventional control methods. The proposed approach is expected to provide better voltage regulation for dynamic load conditions. A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the CLL-T SPRC are compared from the simulation studies.
    Keywords: Resonant Converter, Fuzzy logic, Control System, Power Electronics, MAT LAB