فهرست مطالب

Research in Pharmaceutical Sciences - Volume:10 Issue: 1, Feb 2015

Research in Pharmaceutical Sciences
Volume:10 Issue: 1, Feb 2015

  • تاریخ انتشار: 1393/12/02
  • تعداد عناوین: 10
|
  • F. Ahmadi, Z. Oveisi, S. Mohammadi Samani, Z. Amoozgar Pages 1-16
    Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery.
  • J. Emami, H. Mohiti, H. Hamishehkar, J. Varshosaz Pages 17-33
    Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7® software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 µm, and 2.98 µm; respectively. Our results provide fundamental data for the application of SLNs in pulmonary delivery system of budesonide.
  • B. Amin, V. Hajhashemi, H. Hosseinzadeh Pages 35-43
    Glutamate neurotoxicity and pro-inflammatory cytokines have an important role in the central sensitization of neuropathic pain. The purpose of the present study was to evaluate anti-hyperalgesic effect of repeated administration of ceftriaxone, which selectively activates and increases the expression of glutamate transporter, as well as minocycline, a selective inhibitor of microglia activation, either alone or together in Wistar rats subjected to the chronic constriction injury (CCI) of sciatic nerve. Ceftriaxone (100, 150 and 200 mg/kg) and minocycline (25, 50 and 100 mg/kg) were administered intraperitoneally from the day of surgery for seven consecutive days. Thermal hyperalgesia was assessed by focal radiant heat source on the hind paw of animals one day before surgery and on 3, 5, 7, 10 and 14 days following that. Ceftriaxone dose dependently, attenuated thermal hyperalgesia in animals. None of the administered doses of minocycline affected the CCI induced-thermal hyperalgesia in neuropathic animals. A fixed dose of minocycline (50 mg/kg) combined with three different doses of ceftriaxone administered for 7 consecutive days yielded a potentiating effect in the enhancing latency time to noxious thermal stimulus remaining until the14th day post-surgery. The results suggest that modulation of microglia activity could have a supportive role in the improvement of CCI-induced thermal hyperalgesia and combination of such classes of drugs which have no antibiotic effects could be a new and promising therapeutic strategy for treatment.
  • S. Hajiahmadi, M. Panjehpour, M. Aghaei, S. Mousavi Pages 45-53
    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer.
  • H. Sadraei, M. Ghanadian, G. Asghari, R. Sharifian Pages 55-61
    Bioassay monitoring of hydroalcoholic extract from the aerial part of Pyconcycla spinosa revealed that it contains components with spasmolytic activity in vitro. In addition, P. spinosa extract at oral dose of 1-5 mg/kg inhibits diarrhoea in animal models. Pharmacological screening of pure compounds isolated from P. spinosa hydroalcoholic extract led to the identification of 3, 7, 10, 14, 15-pentaacetyl-5-butanoyl-13, 17-epoxy-8-myrsinene (PABEM) which is a new diterpene. In this research, we have investigated antispasmodic and antidiarrheal effects of PABEM for comparison with P. spinosa extract. Aerial parts of P. spinosa were extracted with ethanol. For antispasmodic studies, rat isolated ileum was suspended in Tyrode''s solution in an organ bath. The ileum was contracted by acetylcholine (ACh, 0. 5 µM), serotonin (5-HT, 5 µM) or electrical field stimulation (EFS). P. spinosa extract in a concentration dependent manner (10-640 µg/ml) inhibited ileum contractions induced by ACh, 5-HT or EFS. The new compound isolated form P. spinosa extract «PABEM» in a similar manner inhibited the contractile response to ACh, 5-HT and EFS. However, the inhibitory effects of PABEM were observed at much lower bath concentrations. The relaxation effect of PABEM was started at 40 ng/ml bath concentration and with 2. 5 µg/ml PABEM in the bath, the contractile responses of ileum were completely abolished. Both hydroalcoholic extract of P. spinosa and PABEM reduced intestinal meal transit and castor oil and MgSO4 induced diarrhoea in mice. However, PABEM was about 10 times more potent than its parent extract. This research shows that PABEM is probably the main component responsible for antispasmodic and antidiarrheal actions of P. spinosa extract.
  • H. Rahimi, B. Negahdari, Ma Shokrgozar, A. Madadkar, Sobhani, R. Mahdian, A. Foroumadi, M. Kafshdouzi Amin, M. Karimipoor Pages 63-71
    Anaphase promoting complex (APC) controls cell cycle and chromosome segregation. The APC activation occurs after binding of co-activators, cdh1 and cdc20. Cdh1 plays a role in cancer pathogenesis and is known as a potential drug target. The main aim of this study was prediction of 3D structure of cdh1 and designing the inhibitory compounds based on the structural model. First, 3D structure of cdh1 was predicted by means of homology modelling and molecular dynamics tools, MODELLER and Gromacs package, respectively. Then, inhibitory compounds were designed using virtual screening and molecular docking by means AutoDock package. The overall structure of cdh1 is propeller like and each DW40 repeat contains four anti-parallel beta-sheets. Moreover, binding pocket of the inhibitory compounds was determined. The results might be helpful in finding a suitable cdh1 inhibitor for the treatment of cancer.
  • M. Etebari, A. Jafarian, Dehkordi, V. Lame Pages 73-79
    Anticancer therapy with alkylating agents has been used for many years. Dacarbazine (DTIC) as an alkylating agent is used alone or in combination with other chemotherapy drugs. In order to inhibit the formation of secondary cancers resulting from chemotherapy with DTIC, preventional strategies is necessary. The present study was undertaken to evaluate the genoprotective effect of amifostine on the genotoxic effects of DTIC in cell culture condition. To determine the optimum genotoxic concentration of DTIC, HepG2 cells were incubated with various DTIC concentrations including 5, 10 and 20 µg/ml for 2 h and the genotoxic effects were evaluated by the comet assay. The result of this part of the study showed that incubation of HepG2 cells with DTIC at 5 µg/ml was sufficient to produce genotoxic effect. In order to determine the protective effects of amifostine on genotoxicity induced by DTIC, HepG2 cells were incubated with different concentrations of amifostine (2, 3 and 5 mg/ml) for 1 h which was followed by incubation with DTIC at 5 µg/ml for 2 h. One hour incubation of cells with different concentrations of amifostine before incubation with DITC indicated that at least 5 mg/ml concentration of amifostine can prevent genotoxic effects induced by DTIC on HepG2 cells under described condition. In conclusion amifostine could prevent DNA damage induced by DTIC on HepG2 cells.
  • V. Akbari, H. Mir Mohammad Sadeghi, A. Jafarian, Dehkordi, C. Perry Chou, D. Abedi Pages 81-89
    Human epidermal growth factor receptor (HER) family plays an important role in various types of cancers. As a result, antibodies against HER and the mechanism of antigen-antibody binding action are under active investigation. We previously constructed a single-chain variable fragment (ScFv) against HER2, i.e. anti-Her2 ScFv, for expressing in the Escherichia coli. In the present study, we report the optimization of anti-Her2 ScFv expression in an E. coli host of BL21 (DE3) pLysS using response surface methodology based on tuning of three cultivation variables, including isopropyl-beta-D-thiogalactopyranoside (IPTG) concentration, temperature and post-induction time. A model for protein expression according to the Box-Behnken design predicted a maximal anti-Her2 ScFv expression at 37 °C, a post-induction time of 10.45 h and 0.75 mM IPTG. In addition, strategies based on inclusion body isolation and affinity chromatography were applied to purify anti-Her2 ScFv. The purity of the final product for inclusion bodies isolation and purification by Ni-NTA resin were 70 % and 95 %, respectively. The solubilization of the inclusion bodies was carried out using two denaturant agents, guanidine hydrochloride and urea. The present study showed that guanidine hydrochloride was more effective than urea in solubilizing the inclusion bodies.
  • A. Jahanian, Najafabadi, M. Soleimani, K. Azadmanesh, E. Mostafavi, K. Majidzadeh, A Pages 91-96
    Yersinia pestis which is the causative agent of pneumonic plague and distributed in all continents has led to many deaths during the history. Because of its high mortality rate, it must be diagnosed and treated at the earliest time post infection and therefore, rapid diagnostic tests are required. In the present study, we cloned the coding sequence of F1 capsular antigen of the bacteria in the pBAD/gIII plasmid for later expression and purification of the protein to produce poly and monoclonal antibodies against this antigen, and subsequently to develop rapid and efficient diagnostics tools for Y. pestis infections.
  • Se Sajjadi, I. Mehregan, M. Taheri Pages 97-101
    The chemical composition of the volatile oil from aerial parts of Hypericum triquetrifolium Turra was studied by GC-MS. Fifty components (97.1% of the total composition) were detected in the volatile oil. Germacrene-D (21.7%), b-caryophyllene (18.3%), d-cadinene (6.4%), trans-b-farnesene (4.3%), a-humulene (3.8%), b-selinene (3.7%), γ-cadinene (3.3%) and trans-phytol (3.2%) were found to be the major constituents of the oil. The oil of H. triquetrifolium consisted of five monoterpene hydrocarbons (3.4%), two oxygenated monoterpenes (0.4%), twenty-two sesquiterpene hydrocarbons (77.1%), eight oxygenated sesquiterpenes (7.9%) and one oxygenated diterpene (3.2%). Twelve nonterpenic compounds were also consisted 5.1% of the oil. In conclusion, the oil of H. triquetrifolium was characterized by a high content of sesquiterpenes (85.0%), whereas monoterpenes contained only 3.8% of the essential oil.