فهرست مطالب

International Journal of Nano Dimension
Volume:9 Issue: 3, Summer 2018

  • تاریخ انتشار: 1397/04/12
  • تعداد عناوین: 10
|
  • Raffaele Conte*, Anna Calarco, Gianfranco Peluso Pages 209-214
    This review discusses recent developments in the field of nanosized biomaterials and their use in tissue regeneration approaches. The aim is to provide an overview of the research focused on nanoparticle-based strategies to stimulate regeneration. In particular, nanoparticles improve the regenerative capabilities of biomaterials offering ways to control surface and mechanical properties. Moreover, incorporation of nanoparticles within biomaterials increases cellular adhesion, differentiation and integration of stem cells into the surrounding environment. Finally, the drug delivery capabilities of nanoparticles offer additional possibilities to increase the biological performance of biomaterials. As the development of nanoparticles continues, incorporation of this technology in the field of regenerative medicine will ultimately lead to new tools that can diagnose, track and stimulate the growth of new tissues and organs
    Keywords: Biomaterials, Nanotechnology, nanocomposites, Nanomedicine, regeneration
  • Chiradeep Mukherjee*, Saradindu Panda, Asish Kumar Mukhopadhyay, Bansibadan Maji Pages 215-227
    Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and odd parity generator. In this paper, a comprehensive QCA based methodology, termed as LTEx methodology is proposed to produce n-bit even and odd parity generators. The two-input Layered T Exclusive OR (LTEx) module is used to implement high fan-in parity generators. The corollaries first formulate the QCA design metrics such as O-Cost, Costα, and irreversible power dissipation and then exploit the operability of the LTEx module to instantiate the efficient n-bit parity generators. These parity generators can exclusively be used in error detection and correction schemes
    Keywords: Cost? Layered T Gate_LTEx Module_Parity Generator_Quantum Cellular Automata (QCA)
  • Masoumeh Sayadian, Hamidreza Sadegh*, Gomaa Abdelgawad Mohammed Ali Pages 228-237

    Calix[8]arenes of conformational rigid were isolated. The NMR parameters of the structure of calix[8]arenes have been compared. The study of organic structures to form nanoporous materials is well-known in chemistry phenomena to find the crystal form of calix[8]arene as supramolecule. Investigated and compared hydrogen bonding, oxygen and nitrogen atoms effect on calix[8]arene and its complexes were reported at Hartree-Fock (HF) theory by Gaussian 2003 of program package. In this work, the complexing properties of azobenzene-bridged calix[8]arene with alkali earth metal cations has studied. The complexation properties of calix[8]arene were studied by HF method. The complex of the calixarenes showed different properties for the different cations, depending on the cations and the position of the substituent grafted on the ligand

    Keywords: Calix [8] arene, Chemical shift, Density functional theory, Hartree, Fock, Hydrogen bonding, Nanostructure
  • Reyhaneh Sahba, Mirabdullah Seyed Sadjadi*, Ali Akbar Sajjadi, Nazanin Farhadyar, Babak Sadeghi Pages 238-245
    biocompatible hydroxyapatite nanocomposites are biocompatible, biodegradable and nontoxic have been paid many attentions as one of the most suitable vehicle for drug delivery use. Our objective in this work was to prepare and characterize caseins based HA nanocomposite in a colloidal form for drug delivery purposes. Casein biopolymer was firstly extracted from skimmed milk by adding acetic acid and was used then to prepare colloidal hydroxyapatite nanoparticles (nHA) through a modified microemulsion technique. Characterization of the as prepared samples was carried out by means of Fourier Transform Infrared (FT-IR) spectroscopy, X-ray powder diffraction patterns (XRD), Field Emission Scanning and Transmission Microscopy (FESEM & TEM). Dynamic light scattering (DLS) technique was finally used to measure particle size and zeta potential distribution of the sample using electrophoresis mobility. The results revealed successful preparation of a colloidal HA /casein suspension with a hydrodynamic zeta average particle size distribution of 256.6 nm
    Keywords: Casein micelle, Colloidal hydroxyapatite, Degradable biopolymer, Dynamic light scattering, Micro emulsion technique
  • Gholamreza Kiani *, Mehdi Soltanzadeh, Iraj Ahadzadeh Pages 246-259
    In this paper, Taguchi method was applied to determine the optimum conditions for Zn (II) removal from aqueous solution by halloysite nanotubes (HNTs). An orthogonal array experimental design (L16 (45) which is of five control factors including pH, t (contact time), m (adsorbent mass), T (temperature) and C0 (initial concentration of Zn (II)) having four levels was employed. Adsorption capacity (mg/g) and removal percent (%) were investigated as the quality characteristics to be optimized. In order to determine the optimum levels of the control factors precisely, range analysis and analysis of variance were performed. For removal percent, the optimum condition was found to be pH=6, T=35°C, w=0.4 g, and C0=50 mg/L. Under these optimum conditions, adsorption capacity and removal percent can reach to 132.16 mg/g and 99.76%, respectively
    Keywords: Adsorption, Halloysite Nanotubes, Heavy metal ions, Optimization, Taguchi method
  • Fayzollah Khorramrouz, Seyed Ali Sedigh Ziabari*, Ali Heydari Pages 260-272
    This study investigates geometrical variability on the sensitivity of the junctionless tunneling field effect transistor (JLTFET) and Heterostructure JLTFET (HJLTFET) performance. We consider the transistor gate dielectric thickness as one of the main variation sources. The impacts of variations on the analog and digital performance of the devices are calculated by using computer aided design (CAD) tools. The gate oxide thickness is varied uniformly from right to left and vice versa and the performance of devices are analyzed. It is shown that changes in the geometric dimensions of the devices improves some electrical parameters and degrades others. Finally, we use the oxide thickness variation advantage and implement the oxide pocket close to the drain-channel interface for proposing of the pocket in narrower drain side oxide HJLTFET (PNS-HJLTFET)
    Keywords: Ambipolar current, Geometrical variability, Heterostructure, Junctionless tunnel field, effect transistor, Oxide pocket
  • Pramila Khandel, Sushil Kumar Shahi *, Leeladhar Kanwar, Ravi Kumar Yadaw, Deepak Kumar Soni Pages 273-285
    Silver nanoparticle therapeutics using symbiotic organisms can offer solutions to the current obstacles in antimicrobial therapies, because of cost-effective and eco-friendly properties over chemical and physical methods. In this study, we aim to synthesize silver nanoparticles using lichen (Parmotrema tinctorum) extract and evaluation of its antibacterial properties. Synthesized silver nanoparticle were characterized on the basis of morphology, size, shape and nature by UV-visible spectroscopy, Transmission electron microscopy (TEM), Particle size analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. TEM analysis showed that synthesized silver nanoparticles were spherical in shape with maximum particles in size range within 15 ± 5.1 nm. Prolonged stability of synthesized silver nanoparticles was due to the presence of capping and stabilizing agent in form of biomolecules, which were confirmed by FTIR analysis. Furthermore, the bio-potentiality of synthesized silver nanoparticles was done against five pathogenic bacteria viz., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Klebsiella pneumoniae usingthe agar well diffusion method. On the basis of zone of inhibition we can say that silver nanoparticles had antibacterial properties. Our results suggested that, prepared silver nanoparticle might be used for production of antibiotics and applied as potential microbial cell inhibitors
    Keywords: Antibacterial activity, Biosynthesis, Silver nanoparticles, Biochemical profiling, Lichen extract
  • Faegheh Pourhojat, Shahab Shariati*, Mahmoodreza Sohrabi, Hamid Mahdavi, Leila Asadpour Pages 286-297
    skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nanofibrous mats as an alternative for skin grafts. In this study, after preparing optimized fibrous mats of Poly lactic-co – glycolic acid (PLGA), characterization and identification of their chemical structure was carried out by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The drug release of the optimized electrospun nanofibrous mats and the kinetics of drug release were investigated in vitro. Then, wound dressing performance, antibacterial property, cell adhesion and biocompatibility of nanofibrous scaffolds prepared by Methyl Thiazolyl Tetrazolium (MTT) assays as well as important features of suitable wound dressing including porosity, Water Vapor Transmission Rate, and swelling percentage of nanofibrous mats were evaluated in vitro. Nanofibrous mats containing Hypericum perforatum extract without any bead with burst drug release kinetics followed Higuchi kinetic model with proper regression coefficient (PLGA-E10 = 0.8, PLGA-E30 = 0.76). The results of the antibacterial activity of nanofibrous mats against Gram positive bacteria (S. aureus) as well as the results of the cell culture test and in vitro biodegradability tests on these mats showed good potential of composite scaffolds as antimicrobial coverage for wounds with Gram positive bacteria infectious agent.
    Keywords: Drug release, Kinetic, Electrospinning, Hypericum Perforatum, Poly lactic, co?glycolic acid
  • Kolsoom Niknejad, Mazyar Sharifzadeh Baei*, Sogol Motallebi Tala Tapeh Pages 298-313
    Metformin hydrochloride, a drug group of biguanides, with significant efficacy in the treatment of diabetes type II, is decomposed before reaching to the stomach and is wasted in great losses. In this study, the nanoliposomes of metformin hydrochloride were prepared with Bingham method. At first, the single factor test is done. Design variables are: lecithin to cholesterol ratio, organic solvent phase to aqueous solvent phase and formation time. The optimal ratios in vitro are obtained 7:1, 4:1, and 2.20, respectively. Entrapment efficiency is obtained 89.74. Then, by design of expert software, RSM method is used in five areas for evaluating the data. Optimum conditions were 6.97:1, 4.46:1, and 151.29, respectively and entrapment efficiency is obtained 90.9. Finally, phosphatidylethanolamine has replaced the lecithin and the entrapment efficiency was obtained as 93.04. So, using of phosphatidylethanolamine has been better than lecithin in pH=7.4. Various physicochemical characteristics of Metformin Hydrochloride nanoliposomes were determined and evaluated. The mean size of metformin hydrochloride nanoliposomes based on phosphatidylethanolamine and lecithin with well-defined spherical shape was 52nm and 83nm, respectively. Based upon the in vitro release profiles, Metformin hydrochloride nanoliposomes exhibited a sustained-releasing potential in addition to the release behavior followed the Weibull equation. Release ratio for nanoliposomes based on phosphatidylethanolamine and lecithin are obtained 20% and 36.66%, respectively. The results indicated that the encapsulation of metformin hydrochloride into nanoliposomes proved to be a promising technology for more widespread uses. Encapsulation by phosphatidylethanolamine nanoliposome and release ratio by lecithin nanoliposome has been desired conditions.
    Keywords: Diabetes type II, Encapsulated Efficiency, In vitro release, Metformin Hydrochloride, Nanoliposome
  • Ghasem Karim-Nezhad*, Zeynab Khorablou, Parisa Seyed Dorraji Pages 314-324
    In this research, a glassy carbon electrode was coated with a thin layer of multi-walled carbon nanotubes in the presence of the surfactant and subsequently was electro-polymerized with Poly-L-arginine (P-L-Arg). The prepared electrode was used as an effective sensor for the quantitative detection of Rutin (Ru). The fabricated electrode exhibited good electrochemical performance with low electron transfer resistance. The electrochemical behavior of Ru at the prepared electrode was also investigated by cyclic voltammetry and differential pulse voltammetry techniques. For modified glassy carbon electrode, the transfer coefficient (α), the number of electrons involved in the rate-determining step (nα) and electron transfer rate constant (ks) calculated. Under the favorable conditions, a linear relationship between the oxidation peak current and concentration of Ru was obtained in the range from 0.1 µM to 10 µM with a detection limit of 0.048 µM and with the extraordinary high sensitivity value of 6.3767, µA/µM was obtained. Interference and stability studies showed that satisfactory detection results are achieved using this electrode. The proposed electrode was successfully applied for the determination of Ru in human blood serum samples.
    Keywords: Modified Electrode, Multi, Walled Carbon Nanotube, Poly, L, Arginine, Rutin, Voltammetry