فهرست مطالب

Pollution
Volume:1 Issue: 3, Summer 2015

  • تاریخ انتشار: 1394/04/14
  • تعداد عناوین: 10
|
  • Safoura Abarghoei, Seyed Aliakbar Hedayati, Hamed Ghafari Farsani, Mohammad Hasan Gerami Pages 247-256
    This study aimed to evaluate the efficacy of silver sulfate (AgSO4) as a toxicant in goldfish (Carassiusauratus). One hundred and forty-seven live specimens of C. auratus were obtained and exposed to 1, 10, 100, 500, 1000 and 2000 ppm of AgSO4for 96 hours. There was one control group (no AgSO4) and three replicates. The physicochemical properties of water and the following parameters were constant: pH: 7.56±0.45 (TS1); temperature: 19±1°C; hardness: 293±2.35 ppm and dissolved oxygen: 8.80 ±0.06 mg L-1 (DO-5510). LC1, LC10, LC30, LC50, LC70, LC90 and LC99 were calculated in 24, 48, 72 and 96 hours. For assessing the impact ofAgSO4 on physiological responses of goldfish hematological indices, blood glucose and cortisol levels were measured. Results showed that LC50 96-h of AgSO4 for goldfish was 687.81 ppm. In addition, the use of AgSO4induces a significant decrease in MCHE after 48 hours, MCV and MCH after 96 hours and lymphocyte after 96 hours in contrast to the control group (P<0.05). Furthermore, increased lymphocyte was significant after 24 hours exposure (P<0.05). In addition, glucose increased significantly at P<0.05 with time increase24 hours after experiment but this (). In conclusion, the study showed that acute toxicity of AgSO4induced hematological alterations in goldfish and offers a tool for the evaluation oftoxicity-derived alterations.
    Keywords: Carassiusauratus, hematological parameters, silver sulfate, stress response, toxicity
  • Barkouch Yassir, Pineau Alain Pages 257-264
    This study was carried out to 1. determine spatial variations of heavy metal deposition in agricultural soils of two rural communities (OuledBouAicha and Tazakourte) of about 5790 ha in a mining area near Marrakech city in Morocco; 2. to assess the extent of metallic pollution generated by the mining activity and; 3. to identify the key mechanism responsible for this contamination and its relation to mining activity. Soil pollution assessment was carried out on one hand by measurement of the total metal concentration and on the other hand by studying four heavy metals speciation of the studied soils. The chemical forms of four heavy metals in soils around DraaLasfar mine were studied by determining soil Cd, Cu, Pb and Zn species using standard solvent extraction and Atomic Absorption Spectrophotometric techniques. The chemical pools of the metals indicated that the metals were distributed into six fractions with most of them residing in the non-residual fractions thus suggesting how readily the metals are released into the environment. Considering that the metals occur in the most available forms, we suggested that it is most likely that the metals must have been derived from anthropogenic sources especially from the mining activity in the studied region.
    Keywords: heavy metal contamination, mining activity, sequential extraction, soils, tailings, speciation
  • Rakesh Bhutiani, D.R. Khanna, Bharti Tyagi, Prashant Tyagi, Dipali Kulkarni Pages 265-273
    The aim of this study was to assess the environmental impact of socio-cultural practices on the water quality of River Ganga at the foothills of the Garhwal Himalayas in Uttarakhand State, India. The physico-chemical parameters that contributed to the temporal variation and pollution in the river were identified in this study. Principal component analysis (PCA) and Cluster analysis (CA) were used in the identification of anthropogenic factors (industrial, urban sewage, agricultural, land use and mining activities) and natural factors (soil erosion, weathering). The results of this study show that total coliform, fecal coliform, nitrate, sodium, phosphate, sulphate, TDS (Total dissolved solids), temperature, BOD (Biochemical oxygen demand), calcium and chloride are parameters significantly contributing to pollution load.
    Keywords: cluster analysis, Ganga River, principal component analysis, water quality
  • Angel M. Costa, Feliciano Fraguela, JosÉ, A. Orosa, Gholamreza Roshan Pages 275-285
    The purpose of this article is to present the development of a wind farm, with a condition monitoring system (CMS) based on control charts as the algorithm, centred on a new index, to prevent soil pollution by oil spills in wind farms. To this end, temperature sensors can be considered as one of the more significant sensors to be employed in this study, because the information obtained with regard to anemometers and electrical power output counters can be employed by the control system. As a result, among the other variables, oil temperatures sampled in multipliers used in the wind turbines of a real wind farm were employed. Statistical analyzes were developed and the relationship between wind farm maintenance (usually related to wind farm oil spills) and oil temperature was obtained. Furthermore, a practical case study, centered in the statistical process control, based on the low-cost sample variable was developed and showed that this new procedure would improve deficiencies in the maintenance process, thus, reducing the failure detection time under low sensor cost, as also the related soil pollution.
    Keywords: applied probability, decision analysis, oil spill, maintenance, wind warm
  • Vikram Gandhi, Anshu Priya, Suman Priya, Vivek Daiya, Jitendra Kesari, Krishna Prakash, Amrit Kumar Jha, Kundan Kumar, Nitish Kumar Pages 287-295
    In recent years, environmental pollution by coal mining is a long-established human activity affecting all levels of life with various environmental impacts by generating heavy metals. The presence of heavy metals even in trace amount is toxic and detrimental to all living organisms. The coal mine area in Bokaro is one of the “Toxic Hotspot” in India. Bacteria have evolved uptake and efflux mechanisms to adapt in heavy metals contaminated environments and thus represent a potential source for bioremediation processes. In the present study, we isolated and characterized eight heavy metal resistant bacteria (NK-1 to 8) from soil sample in Bokaro coal mines, India. Isolates were selected based on high level of heavy metal resistance and its biochemical characterization. The following bacteria were identified based on 16S rRNA gene sequencing Enterobacter ludwigii (KM029957; NK-1), Klebsiella pneumonia (KM029958; NK-2), Enterobacter ludwigii (KM029959; NK-3), Enterobacter ludwigii (KM029960; NK-4), Klebsiella oxytoca (KM029961; NK-5), Enterobacter cloacae (KM029962; NK-6), Acinetobacter gyllenbergii (KM029963; NK-7), Enterobacter cloacae (KM029964; NK-8). A high degree of metal resistance associated with multiple antibiotic resistances was also detected in the selected isolate which was confirmed by the presence of plasmid. These isolates can further be used for bioremediation of heavy metals from contaminated site.
    Keywords: bioremediation, coal mine, Environment, Heavy metals, 16S rDNA
  • Akhtar Inam, Seema Sahay Pages 297-304
    Although the Indian population is largely vegetarian, not much attention has been given to the cultivation of vegetables, as compared to other crops like cereals, pulses and oil seeds. Therefore, the present study was conducted on two leafy vegetables, spinach (Spanacia oleracea L.) and methi (Trigonella foenum graecum L.) commonly grown in Aligarh, as the two popular vegetables of Indian diet. The study was conducted for two successive years and during the first year, phosphorus and fly ash interactions with a uniform dose of nitrogen and potassium on both vegetables was observed. During the second year, while keeping nitrogen and phosphorus uniform, potassium and fly ash combinations were studied again with both vegetables, to determine the optimum dose of inorganic fertilizers and fly ash combination. It was observed that fly ash applied at the rate of 15 t ha-1 along with N40P15K20, proved optimum for spinach while in the case of methi, N20P30K40 + FA10 was sufficient. Therefore, both vegetables can safely be grown with 10 to 15 t ha-1 of fly ash and a comparatively lower quantity of NPK.
    Keywords: fly ash, methi, nitrogen, phosphorus, potassium, spinach, thermal power plant
  • Nisar Ahmad, Mohammad Jaafar, Mohammed Alsaffar Pages 305-313
    A study on natural radioactivity in virgin and agricultural soil samples collected from Sungai Petani was conducted using high-purity germanium. The mean activity concentrations of 226Ra, 232Th, and 40K in virgin soils were 51.06±5.83, 78.44±6.42, and 125.66±7.26 Bq kg−1, respectively, while those in agricultural soils were 80.63±5.78, 116.87±7.87, and 200.66±18.24 Bq kg−1, respectively. The corresponding activity concentrations in agricultural soils were higher than those in virgin soils and those reported for other countries of the world. The average values of radium equivalent activity (Raeq), external hazard index (Hex), internal hazard index (Hin), outdoor annual effective doses (Eout), and indoor annual effective doses (Ein) in agricultural soils were 258.38 Ba kg−1, 0.708, 0.925, 0.162 mSv y−1, and 0.669 mSv y−1, respectively. The average values of outdoor external dose (Dout) and indoor absorbed dose (Din) rate in agricultural soils were 116.04 and 218.46 nGy h−1, respectively, which were higher than the permissible limit. Soil with Hex and Hin less than unity are suitable for use as building materials and in agriculture.
    Keywords: HPGe, natural radioactivity, radiological hazard, soil
  • Raymond Njinga, Viva Ibrahim, Ibiale Ishoryiyi Pages 315-324
    The activity concentration of gross alpha and gross beta particles in four samples of borehole drinking water consumed in Ibrahim Badamasi Babangida University (IBBU), Lapai, Niger State-Nigeria was measured, using a portable single channel gas free proportional counter (MPC2000B-DP) detector. This study focused on cancer related problems and the bio-data of the environment was discussed as well as the radiological effect of the water on consumers. Higher concentration of alpha and beta were observed in Hostel block A (DD) with values of 0.085 0.024 and 11.229 0.901 BqL-1, respectively. However, lower concentration of alpha and beta particles were observed in the Faculty of Management Science (AA) with values of 0.006 0.005 and 0.001 0.276 BqL-1, respectively. Out of the four sampling sites studied, only the Faculty of Management Science fall below the guideline levels of gross alpha (0.5 BqL-1) and gross beta (1.0 BqL-1) in drinking water, established by the World Health Organization. These results show that, consumption of groundwater from the other three major borehole sources, may pose significant radiological health hazards to the population.
    Keywords: Activity concentration, gross alpha, gross beta, groundwater, radiological health hazards
  • Raymond Njinga, Sameul Mamman Pages 325-332
    Exposure to radiation from different types of television sets was measured to ascertain the levels of hazards posed to the human biological system. Measurement of the annual radiation dose hazards was performed using a halogen-quenched GM tube with thin mica end window having a density of 1.5 mg/cm2, effective window diameter of 0.360 inch and side wall of 0.012 inch thick. The GM tube was placed for 180 minutes and the sensor faced the screens of the various TV sets, one meter apart. The annual radiation dose ranged from 0.012 ± 0.006 mSv/yr for plasma-SONY to 0.13 ± 0.012 mSv/yr for SHARP and SAMSUNG 24 inch TV sets, containing cathode ray tubes. The annual doses from the 15 and 24 inch-LG TVs (manufactured with cathode ray tubes) were relatively low, with values of 0.031 ± 0.017 and 0.035 ± 0.005 mSv/yr, respectively. The 21 inch THERMOCOOL and PROTECH (with cathode ray tubes), produced annual doses of 0.110 ± 0.052 Sv/yr and 0.063 ± 0.002 mSv/yr, respectively. This provides an insight into the amount of radiation generated by different TV sets in households, on an annual basis. After some years of exposure to TV radiation, health complications such as carcinogenesis or other adverse cellular events may occur, due to cumulated (but does not always) doses which may result in DNA damage, to the human biological system.
    Keywords: annual radiation dose, cathode ray tubes, health hazards, ionizing radiation
  • Md. Sikder, Shunitz Tanaka, Takeshi Saito, Toshiyuki Hosokawa, Sulmin Gumiri, Ardianor Ardianor Uddin, Shafi Tareq, Mashura Shammi, Ak Kamal, Masaaki Kurasaki Pages 333-346
    The development of a surface water evaluation index is a critical factor in the assessment, restoration and protection of stream water quality. Quantifying water pollution in specific grade using dominant parameters is important, as this can explain the current state of water pollution with accuracy. As a result, an integrated multi-parameter water quality index has been developed. It is based on the 10 most prevailing parameters (pH, conductivity, nitrate ions, phosphate ions, Escherichia coli number, cadmium, chromium, lead, copper and manganese) with a scale of 1 to 4, wherein the grades are classified into 1: good; 1.1-1.5: slightly polluted; 1.6-2.0: moderately polluted; 2.1-2.9: heavily polluted and 3.0-4.0: gravely polluted. The measuring stick used was according to the 2011 background values of the World Health Organization (WHO) in which a value of 0.1 was attributed for each, so that the final grade can be calculated. Water quality data were successfully fitted in an integrated multi-parameter water quality index to measure the river water level of pollution, and effectively represented every water bodies. This innovative index is able to quantify pollution with respect to seasons, geography and geomorphology of the respective rivers. Although operative, this index still lacks scientific integrity and as such, more synoptic experiments in the rivers of developing countries are recommended to attain a pragmatic feature.
    Keywords: parameters, water pollution, water quality, water quality index