فهرست مطالب

Polyolefins Journal
Volume:1 Issue: 2, Autumn 2014

  • تاریخ انتشار: 1393/06/13
  • تعداد عناوین: 6
|
  • Mohsen Najafi, Mahmoud Parvazinia, Mir Hamid Reza Ghoreishy Pages 77-91
    A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The initial catalyst active sites distribution was assumed to be uniform, while the monomer diffusion coefficient was considered to be different inside the fragments and cracks. In other words, the cracks were distinguished from fragments with higher monomer diffusion coefficient. To model the particle temperature a lumped heat transfer model was used. The fragmentation pattern was considered to remain unchanged during the polymerization. A Galerkin finite element method was used to solve the resulting two-dimensional (2-D) moving boundary value, diffusion-reaction problem. A two-dimensional polymeric flow model (PFM) was implemented on the finite element meshes. The simulation results showed that the fragmentation pattern had effects on the molecular properties, reaction rate and the particle temperature at early stages of polymerization.
    Keywords: particle overheating, finite element method, modelling, particle growth, Polyolefin
  • Ning Zhao, Ruihua Cheng, Qi Dong, Xuelian He, Zhen Liu, Shiliang Zhang, Minoru Terano, Boping Liu Pages 93-105
    SiO2-supported silyl chromate catalyst is an important industrial catalyst for production of high grade HDPE pipe materials. The control of the short chain branch (SCB) distribution using this catalyst system is still a great challenge. In this work, ethylene and 1-hexene copolymers were synthesized using SiO2 supported silyl chromate catalyst combined with triisobutylaluminium (TIBA), triethylaluminium (TEA) and mixed TIBA/TEA at molar ratio 1:1 (TIBA/TEA/1:1) as three different Al-alkyl co-catalysts.The temperature rising elution fractionation (TREF) and successive self-nucleation and annealing (SSA, by DSC) methods were combined to analyze the short chain branch distribution (SCBD) of these ethylene/1-hexene copolymers. The resultsshowedthat different types of co-catalyst had a great influence on SCBD of ethylene/1-hexene copolymers. The copolymer produced with TIBA showed better SCBD than the copolymer produced with TEA, and the copolymer produced with TIBA/ TEA/1:1 showed a SCBD in between those with TIBA and TEA.
    Keywords: ethylene, 1, hexene copolymerization, Al, alkyl co, catalyst, polymerization kinetics, SiO2, supported silyl chromate catalyst, short chain branch distribution
  • Haif Alshammari, Helmut G. Alt Pages 107-116
    A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa zirconocene complex [C5H4-SiH(Me)-C5H4]ZrCl2 possessing a hydride silane moiety. The different stages of syntheses included the formation of bis(cyclopentadienide)methyl silane which was utilized to prepare the silyl-bridged zirconocene complexes. The dinuclear complexes were prepared by mixing the latter complexes with allylated alpha-diimine via a hydrosilylation reaction using the Karstedt catalyst, platinum (0)1,3 divinyl-1,1,3,3, tetramethyldisiloxane to react at room temperature for 40 h. These dinuclear complexes were activated with methylaluminoxane (MAO) and tested for the polymerization of ethylene. The dinuclear catalysts showed various activities depending on the nature of the metals and produced polyethylenes with broad or bimodal molecular weight distributions. The trend in polymerization activities was: Ni>Pd>V>Zr>Ti. The ethylene polymerization activities of the dinuclear catalysts were almost double the activities of their analogous alpha-diimine precursors.
    Keywords: dissymmetric dinuclear complexes, Ti, Zr, V, Ni, Pd, Dual site ethylene polymerization catalysts, Bimodal resins
  • Abbas Kebritchi, Mehdi Nekoomanesh, Fereidoon Mohammadi, Hossein Ali Khonakdar Pages 117-129
    In this work, the role of comonomer content of 1-hexene-medium density polyethylene (MDPE) copolymer, synthesized using Phillips catalyst, on thermal behavior parameters such as: crystallization, melting temperature and thermal degradation was investigated in detail. The copolymer was fractionated to homogenous short-chain branching (SCB) fractions by "preparative temperature rising elution fractionation" (P-TREF) method and then it was subjected to thermal analyses. A broad chemical composition distribution (CCD) in terms ofSCB content and molecular weight (Mw) was observed by P-TREF and gel permeation chromatography (GPC), respectively. Based on P-TREF results, a parabolic relationship between methylene sequence length (MSL) and elution temperature (ET) was presented. Differential scanning calorimetry (DSC) showed distinct, well-defined melting peaks over a 22 °C temperature range for SCB contents of about 3-12 (br/1000 C). The variations in physical characteristics such as melting temperature (Tm), crystallinity (Xc), crystallization temperature (Tc) and lamellae thickness (Lc) against SCB content were correlated. Thermogravimetric analysis (TGA) suggested linear relationships between the temperature at maximum degradation rate (Tmax) as well as the degradation initiationtemperature (T5%) versus SCB content. Moreover, the TGA curves exhibited distinct differences at both initiation and propagation stages of thermal degradation at dissimilar comonomer contents.
    Keywords: ethylene, 1, hexene copolymer, short, chain branching (SCB), thermal degradation, phillips catalyst, medium density polyethylene (MDPE)
  • Gregory G. Arzoumanidis Pages 131-137
    The commercial profile of the Amoco CD MgCl2 supported polypropylene catalyst is presented. The development, the unique method of preparation/production, with emphasis on particle morphology, and the parameters affecting particle size (PS), particle size distribution (PSD), and particle shape are discussed in detail. The outstanding performance of the catalyst, tailoredmade for the Amoco-Chisso gas phase process, is attributable to synergistic effects, originating from catalyst and process design factors. Catalyst median particle size (d50) may be controlled in the 7-100 microns range. Parameters affecting PS and PSD during catalyst support preparation include: agitation speed, temperature, organic reagent to Mg ratios, morphology controlling agents, and deliberate spiking of the aromatic solvent used with appropriate contaminants. Particle shape variation between the cubic and spheroidal is affected by the types of reagents used, the ratios of these reagents to Mg, the time/temperature profile of the procedure, and the sequence of reagent addition during catalyst support preparation. Catalyst activation takes place in several steps by thermal treatment of the support with TiCl4/toluene solutions. Cost-effective TiCl4/toluene reuse system from the activation streams has been put in place to reduce waste material considerably. There is an optimum temperature of activation close to 120˚C. The progress of activation as well as catalyst quality may be monitored by IR spectroscopy, expressed in easily identifiable IR fingerprint patterns, which correlate well with the catalyst performance. More recently a new concept of supported catalysts based on the CD technology has been developed. It features organometallic complexes instead of just TiCl4 as the polymerization active centers. The new catalysts show improved performance and advantageous polymer product properties. We suggest that the newly invented organometallic complexes may open a new era in polyolefin catalysis, including polyethylene copolymers. The success of the CD and Amoco-Chisso process is illustrated by the two dozen commercial plants worldwide that use the technology, and the recent licensing advances by Ineos, the successor of Amoco, for this polypropylene technology.
    Keywords: Amoco CD polypropylene catalyst, gas phase, Amoco, Chisso process
  • Naeimeh Bahri-Laleh, Laura Falivene, Luigi Cavallo Pages 139-146
    In this study we have tested the ability of a standard DFT computational protocol to reproduce the experimentally obtained stereoselectivity of 26 different C2-symmetric zirconocene catalysts active in propylene polymerization. The catalysts were chosen for their relevance in metallocene catalyzed polymerization of propylene. To this end, primary insertion of both si- and re-propylene enantiofaces into the Zr-CH2-CH(CH3)2 bond was considered to simulate the growing chains step. The energy difference between these two transition states, ΔEre-si, was taken as a measure of the stereoselectivity (pentad: mmmm%) of different catalysts. The results clearly indicated that there was a good agreement between ΔEre-si and the mmmm% values, so that greater ΔEre-si could correspond to higher mmmm%. A model was fitted to the experimentally obtained mmmm% against theoretical ΔEre-si. The coefficient of determination (R2) of the resultant plot was 0.9793, which indicated a good accuracy of the model. Finally, to quantify the steric role of the studied ligands in the observed stereoselectivity, the analysis of the buried volume (VBur) and of the steric maps was performed for two representative complexes. The images revealed that a greater asymmetric localization of the %VBur around the metal center led to a higher mmmm% in the resultant polymer.
    Keywords: metallocene catalysts, DFT, Molecular simulation, Setereoselective polymerization, Isotactic polypropylene