The Removal of Sodium Dodecyl Sulphate Anionic Surfactant from Wastewater Using UV/H2O2 Advanced Oxidation Process

Message:
Abstract:

Surfactants are used to aid in cleaning equipment and surfaces by restaurants, dairy farms, and food processing plants and are among the basic constituents of organic pollutants in domestic as well as industrial wastewaters causing great environmental damages. Due to their high volume use, surfactant chemicals have the potential for broadscale release into aquatic and terrestrial environment. Surfactants can reach humans, animals and plants from the ground waters used as drinking water supplies. Besides the toxic effects of surfactants their existence in waters even under the toxic level causes many adverse effects on biological life. They cause pathological, physiological and biochemical effects on aquatic animals. A large number of surfactants, including the anionic types employed in the present study, have relatively low biodegradability. Due primarily to economic reasons, it is impractical to replace those low biodegradable surfactants in all household and industrial applications. In the past decades, ozonation and other advanced chemical oxidation has been suggested and investigated by many researchers for pretreatment of refractory surfactants. These investigators have found that the biodegradability of the refractory surfactants can be considerably enhanced by ozonation or photocatalytic treatment. Although effective in improving the biodegradability of refractory surfactants, strong oxidation by ozonation or photocatalytic treatment is a relatively costly method. An alternative advanced oxidation method which is as efficient and yet less expensive to implement would be highly desirable. A method meeting these requirements and deserving attention is the UV/H2O2 oxidation process. This method employs hydrogen peroxide (H2O2) and UV to form a strong oxidizing agent (hydroxyl radicals) during the oxidation process. Hydroxyl radicals have been known to possess a stronger oxidation potential than ozone, 2.8 V for OH and 2.07 V for ozone. This study carried out at a bench scale unit consisted of a batch UV reactor with a working volume of 80 ml to evaluate efficiency of UV/H2O2 AOP in the degradation of surfactant from synthetic wastewater.The effects of various parameters including reaction time, H2O2concentration was investigated. The concentration of model surfactant was determined by the acridin orange method.The present study showed that the UV/H2O2 AOP have higher efficiency than singl UV and H2O2 processes for sodium dodecyl sulphate(SDS) anionic surfactant removal. In this process for the solution with a surfactant concentration of 700mg/L and H2O2 conentration of 0.5mMol, the removal efficiency of 92% was achieved with a reaction time of 30 minute. Also the degradation efficiency was found to be decreased by releasing in surfactant concentration. UV/H2O2 advanced oxidation process is capable of degrading the SDS surfactant from wastewater by high efficiency.

Language:
Persian
Published:
Quranic Knowledge Research, Volume:12 Issue: 4, 2013
Page:
1
magiran.com/p1106107  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!