INVESTIGATION OF VIBRATION BEHAVIOR OF AFM PIEZOELECTRIC MICRO-BEAM IN LIQUID

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Piezoelectric microbeams are special types of beams applicable to the atomic force microscope (AFM). Having piezoelectric layers, they are capable of selfactuating using the voltage imposed on the piezoelectric layer. The present paper discusses the vibrating behavior of piezoelectric microbeams, with respect to the hydrodynamic forces imposed by a fluid. To do so, considering Hamiltons principle and assumptions of the Euler-Bernoulli theory, the dynamic modeling of a microbeam was carried out and the differential equation of vibrating motion was extracted. As it is very difficult to determine the exact amount of hydrodynamic force imposed on a beam, the hydrodynamic forces were approximated using string sphere modeling. The results obtained from dynamic modeling were compared with experimental ones. The results show that sphere string modeling can favorably model natural frequency and the resonance amplitude of piezoelectric microbeams in a liquid environment. The results show that the vibrating motion (natural frequency and resonance amplitude) of a microbeam in liquid is under the influence of fluid density, due to the damping of liquid and additional mass; it is also seen in the higher vibrating modes. By approaching the microbeam to the sample surface and intensifying squeeze force, the results show further amplitude decrease. The amplitude reduction at higher densities and low angles of the microbeam to the horizon is due to the intensification of compression force. When the interaction force between the probe tip and sample surface is intensified, and when there is a very short distance between the probe tip and sample surface (as small as a nanometer), amplitude is affected. According to the DMT model, there is a direct relationship between the interaction force between the tip and sample surface and the radius of the probe tip. Therefore, the more the radius of the probe tip, the more the interaction force will be. The increase of this force will be followed by a decrease in vibrational motion amplitude.

Language:
Persian
Published:
Mechanical Engineering Sharif, Volume:29 Issue: 2, 2013
Pages:
87 to 96
magiran.com/p1214357  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!