Optimization of Malachite Green Biosorption by Green Microalgae from Aqueous Solutions

Message:
Abstract:
Introduction
Malachite green (MG) has been used as a food coloring agent, food additive, medical disinfectant as well as a dye in silk, wool, jute, leather, cotton, paper, and acrylic industries. It is also extensively used as a topical fungicide and ectoparasiticide in aquaculture industries throughout the world. The findings reveal that this dye has now become one of the most controversial compounds used in aquaculture due to the risks it poses on the consumers, including its effects on the immune and reproductive systems as well as its genotoxic and carcinogenic potentials. Despite being banned in several countries, the dye is still being used in many parts of the world due to lack of a proper alternative. Thus, we must also focus our attention on ways for reducing malachite green from aquaculture and industrial wastewaters. Different methods are available for the remediation of dye wastewaters. These include physicochemical methods such as chemical oxidation, precipitation, coagulation, filtration, electrolysis, and photodegradation. The major disadvantage of the physicochemical methods are high operational cost, limited versatility, interference by other wastewater constituents, and less adaptability to a wide range of dye wastewaters. Sorption on activated carbon is an effective method for the removal of color, but it is an expensive method. The development of efficient and environmentally friendly technologies to decrease dye content in industrial wastewater to acceptable levels at an affordable cost is of great importance. In recent years, a number of studies have been focused on some bacteria, fungi, yeasts, and micro/macroalga. Biosorption of MG in the presence of algae such as Caulerpa racemosa cylindracea, Cosmarium sp., Pithophora sp., Hydrilla verticillata, and Chara sp. has been reported previously. The aim of this study was to investigate the biosorption characteristics of green microalgae Scenedesmus quadricauda and Chlorella vulgaris for the removal of MG dye. The effects of such process parameters as initial MG dye concentration (mg/L), initial solution pH, algae amount (mg/L), and contact time (min) on the dye biosorption were analyzed using Box–Behnken design in this work.
Language:
Persian
Published:
Journal of Environmental Studies, Volume:40 Issue: 1, 2014
Pages:
163 to 176
magiran.com/p1265114  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!