FABRICATION AND EVALUATION OF THE MORPHOLOGY, BIODEGRADABILITY,AND CHEMICAL CHARACTERISTICS OF THE NANO-FIBROUS SCAFFOLD POLY-L-LACTIC-ACID (PLLA) AND ITS APPLICATION IN NEURAL TISSUE ENGINEERING

Message:
Abstract:
Background and Aims
Nerve tissue engineering (NTE) is one of the most promising methods for the treatment of the central nervous system (CNS) neurodegenerative diseases. The three-dimensional distribution and growth of the cells within the porous of the scaffold have a significance clinical role in the NTE field. Scaffolds used in tissue engineering, not only must have a good performance, but they should also be porous, biocompatible and biodegradable. The present work aimed to fabricate and study the morphology, biodegradability and chemical characteristics of Poly-L-Lactic-Acid (PLLA) in order to use in the neural tissue engineering.
Materials and Methods
In this experimental study, PLLA nano scaffold was fabricated with an appropriate structure and morphology using Electrospinning Technique. Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were used to determine the physico-chemical properties of the scaffold. Scaffold biodegradation was studied in Phosphate-buffered saline (PBS) for 40 days. Isolated stem and progenitor cells from subventricular zone of the adult mouse brain were cultured on the scaffold and their morphology and connection properties were characterized using SEM.
Results
SEM studies indicated that PLLA is a nano-fibrous scaffold which shows the appropriate surface characteristics. Furthermore, this nanoscaffold showed a high degradation and water uptake rate in the degradation test. Finally, SEM studies confirmed the attachment and growth of the mouse neural stem and progenitor cells on the scaffold.
Conclusion
These results suggested that the PLLA nano scaffold is an appropriate structure for the growth and differentiation of the neural stem and progenitor cells and the electrospining technique is an efficient method for the scaffold producing used in the nerve tissue engineering.
Language:
Persian
Published:
Journal of Medical Science Studies, Volume:25 Issue: 11, 2015
Pages:
988 to 997
magiran.com/p1364355  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!