Real Time Runoff Forecasting of Tire Basin Using Quantitative Precipitation Forecasting of WRF Model

Message:
Abstract:
Introduction
Due to their high speed, flash floods are placed among the most important devastating disasters to humanity in contrast to other disasters such as drought and famine. The event is usually results from heavy precipitation. If the flood forecasting is done by an appropriate method, dealing with can be managed more properly. There are many parameters which are effective on models of flood forecasting. An essential component for flood forecasting is quantitative precipitation forecasting (QPF). At present, QPF is provided using limited area numerical models. The output of these local models is also used for operational and research purposes in Iran. Concerning the importance of QPF for flood forecasting of, in this research, the QPF output of the WRF model is used as an input for the HEC-HMS hydrology model to forecast the flood of Tire basin in Lorestan province of Iran.
Materials And Methods
The Tire basin, in the west and southwest of Iran, is one of the sub-basins of the large Dez basin. In this research, hourly and daily precipitation data of rain gauges and also hourly discharge data from stations were collected and studied,. After preparation and qualitative control of the mentioned data sets, some preparations were applied for calibration of the HEC-HMS model and some of its hydrological parameters such as lag time, curve number and coefficient of maximum discharge were reconsidered. By topographic evaluation and assessment of soil and plant coverage of the region, needed preliminary data for performing of HEC-HMS model were estimated by trial and error method. After calibration and obtaining the optimum parameters, model verification was done using ther results obtained from 3 events thatwere not used for calibration already. For verification of rainfall-runoff models, forecasted precipitation of the meteorological WRF model was used. Simulated precipitations were used in the HECHMS model as an input and then runoff was simulated. Finally, simulated runoff was verified by statistical gauges.
Results
Three statistical criteria are computed in order to evaluate the capability of the coupled model including: the bias, the Mean Absolute Error (MAE), and the absolute relative error. The minimum MAE for the studied events was 13 (m3/s) and the maximum was 76 (m3/s). The minimum and maximum of absolute relative error for peak discharge in the studied events were 1.22, 41.4 (m3/s), respectively. The Minimum and the maximum of absolute relative error for volume of discharge in the studied events were 15.48 and 39.7. Time lags between the observed peak discharge and simulated peak discharge is calculated as 3 to 6 hours. Examining the results, we conclude that the coupled model is working much better for spring events in comparison to winter events.
Conclusion
According to this research it can be said that the combination of WRF and HECHMS models increases the lead time of runoff prediction in real time forecasting. In spite of low errors in the forecasting, it can be said that the complete simulation were partly desirable. These results related to the tested cases in the research and generalizing of these results depend on to the more and extended research in the different fields and events. According to the importance of these kinds of forecasts, we suggest to eliminate the errors of these forecasts performing more studies and investigations.
Language:
Persian
Published:
Journal of Climate Research, Volume:3 Issue: 12, 2013
Page:
53
magiran.com/p1414123  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!