Evaluation of Dryland Barley (Hordum vulgare) Genotypes Response to the Nitrogen Rates and Application Times

Author(s):
Abstract:
Introduction
Nitrogen is the main component of fertilizer programs necessary for production of high quantity dryland barley. This element is the second limiting factor, after water in dryland areas. So for economic production of barley, the proper nitrogen fertilizer application is essential to increase seed quantity and quality in Iran dryland areas. Many researchers have been confirmed that dryland barley yield increased by nitrogen application management. Nitrogen fertilization in dryland areas can increase the use of soil moisture, and improve barley yields to some extent. Different studies have been confirmed interactions between water stress and nitrogen fertilizers on barley, especially under field conditions. From the nitrogen management factors, timing and amount of nitrogen application is known as the most important aspect. This project established in order to study nitrogen rates and nitrogen application time's effects on nitrogen requirement, nitrogen agronomy use efficiency (NUE) and crop characteristics of various dryland barley genotypes in cold and semi cold drylands of Iran.
Materials And Methods
This study was carried out in split-split plot in a RCBD in Dryland Agricultural Research Institute (DARI), Maragheh; where nitrogen application times (fall, 1/2 in fall and 1/2 in spring and 2/3 in fall and 1/3 in spring) were assigned to the main plots, nitrogen rates to sub plot (0, 30, 60, 90 and 120 kg/ha), and 5 dryland barley genotypes to sub-sub plots (Sahand, Abidar, Dayton/Ranny, Alpha/ Gumhuriyet/ Sonja and B-C-74-2)in 4 replications during 2007-2010 years. The Rainfall were 177-498 mm.yr-1 (long term mean is 365 mm.yr-1) in cropping years in DARI station. Soil samples were collected from 0-25 cm for determining total N, P-Olsen, K-Ammonium acetate, TNV, OC, Soil texture, pH, EC and Fe, Mn, Zn and Cu-DTPA before sowing and collected from 0-2, 20-40 and 40-60 cm depths in sub-sub plots in shooting stage (GS32) for determining NO3− andNH4. Ammonium measurement in the soil KCl extracts were down by spectrophotometry method and colorimetric reaction at 655 nm. Also, Absorption spectrophotometry method was used for determination of nitrate in soil extract based on its UV absorbance at 210 nm. In this method two measurements were carried out; one before (by Zn coated by Cu) and second after reduction of nitrate). Using the difference between these two measurements, concentration of nitrate in the extracts was determined.
Results And Discussion
The results showed that nitrogen application rates significantly increased (p
Language:
Persian
Published:
Journal of water and soil, Volume:31 Issue: 2, 2017
Pages:
490 to 508
magiran.com/p1724916  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!