Geoelectrical investigation of seepage beneath the tailing dam areas of Miduk Copper Mine

Abstract:
A tailing dam or confining embankment is constructed to enable the deposited tailings to settle and retain processed water. Tailing dams are susceptible to different kinds of pressures such as water pressure and the load of the tailings themselves. Miduk tailing dam was originally constructed with a fine silty sand layer to retain water covered by coarse grains. It was constructed in stages according to the downstream method, filter and support fill.
Tailing dams and downstream areas must be monitored as they undergo internal erosion, during which, the fine grains in the core of a dam are flushed away by seeping water and, as a consequence, the hydraulic conductivity in the remaining material increases. High velocity flows through the dam embankment can cause progressive erosion and piping. Moreover, the saturation of embankment soils, abutments, differential settlements in foundations, local stress relaxation in the soil and locally increased hydraulic gradient generally reduce soil strengths. The seepage issue in a tailing dam is the cause of reservoir loss to groundwater . Furthermore, it causes environmental problems such as the diffusion of heavy metals, acid drainage and so forth. Reversed water from the tailing dam is particularly important in desert areas.
Resistivity and self-potential (SP) monitoring has been widely applied for solving environmental and engineering problems of embankment dams by studying the changes in the subsurface properties with time. SP changes are caused by water movements through (or under) the dam and resistivity changes reflect the changes in the electrical properties of the dam materials.
Self-potential (SP) is a method where naturally occurring electrical potentials are measured. There are a number of different electro-chemical processes that can create such potentials. The type that is of interest in dam investigations is the so-called streaming potential which is the voltage difference parallel to the direction of flow. The streaming potential is manifested by a shearing of the diffuse layer caused by the hydraulic gradient. The field equipment for SP measurements is simple and inexpensive. It requires a pair of non-polarized electrodes, a high impedance voltmeter and t cables to connect them. Electrode drifts were controlled during SP measurements. Electrode drift is primarily caused by variations in temperature or soil moisture or by contamination of the electrolyte by ions introduced from the soil. Changes in the telluric currents induce substantial changes in the potential distribution in the subsurface, an effect accounted for by making regular measurements of the SP difference between the reference point and the base point within the survey area.
The Resistivity method involves the measurement of the apparent resistivity of soil and rocks as a function of depth or position. The resistivity of the ground is measured by injecting a current with two electrodes and measuring the resulting potential difference with two other electrodes. The readings are usually converted into an apparent resistivity of the sub-surface. From these measurements, the true resistivity of the subsurface can be estimated. The investigated volume can be changed by moving the electrodes. The data are usually inverted to a vertical resistivity section, assuming a 2D geometry perpendicular to the profile. Most commonly, the local variability is minimized, resulting in smooth models compatible with the measured data, meaning that sharp resistivity borders such as the ground water surface is visualized as a smooth transition in such inverted sections.
The principle objective of the present study was to evaluate the electrical resistivity and the self-potential methods used to detect anomalous seepage through mine tailing dams. In this regard, field measurements of resistivity and self-potential were carried out on the downstream grounds of tailing dam so as to identify the SP-responses related to seepage. The hydro-stratigraphy was mapped with the resistivity data (4 profiles of ERT) and groundwater flow patterns were specified with self-potential data (208 SP measurement points). The groundwater flow pattern was controlled by the geological and tectonic history of bedrock and the preferential flow pathway existing beneath the dam.
Language:
Persian
Published:
Iranian Journal of Geophysics, Volume:11 Issue: 2, 2017
Pages:
119 to 134
magiran.com/p1735684  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!