Cellulase Production Under Solid-State Fermentation by Ethanolic Zygomycetes Fungi: Application of Response Surface Methodology

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
 
Background and Objectives
Cellulase is an important enzyme with multiple applications in industries, including food, laundry, pharmaceutical, textile, pulp, paper and biofuel industries. Solid-state fermentation (SSF) is a method for cellulase production, which includes several advantages, compared to submerged fermentation. In this study, cellulase was produced by three filamentous fungi, i.e., Mucor indicus, M. hiemalis and Rhizopus oryzae, through SSF on wheat brans.
Materials and Methods
Effects of cultivation time, temperature, and moisture content of the culture media on cellulase production were investigated using response surface methodology (RSM). Experiments were carried out using an orthogonal central composite design. Based on the analysis of variance, a quadratic model was suggested as a function of the three variables to express cellulase production. The optimum parameters for cellulase production by the fungi were achieved and the highest cellulase activity was reported.
Results
The fungi produced significant amounts of cellulase. Models fitted to the experimental activities of the fungi included high regression coefficients. The optimum media temperature for all fungi was 26.6 ºC. For M. indicus and R. oryzae, the optimum moisture content and cultivation time of the media were 71.8% and 33.2 h, respectively. These parameters were respectively reported as 38.18% and 66.81 h for M. hiemalis. The highest cellulase activities by R. oryzae, M. indicus and M. hiemalis were 281, 163 and 188 U per g of dry wheat bran, respectively. The maximum enzyme production was seen in R. oryzae.
Conclusions
In conclusion, these three advantageous fungal strains can successfully be used for cellulase production through SSF with relatively high yields, compared to other fungal strains.
Language:
English
Published:
Nutrition & Food Technology Research, Volume:6 Issue: 1, Jan-Mar 2019
Pages:
27 to 34
magiran.com/p1930691  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!