Numerical Investigating the Effect of Changing the Ogee Profile of Three-Sided Spillways on Improving their Hydraulic Performance

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Three-sided spillways are one of the important dam's outlet works that despite their hydraulic limitations, selected as the best option in storage dam under special topographical conditions. Considerable energy losses, the flow high turbulences, and applying great fluctuations shock on walls and bed of the side channel are the hydraulic conditions that must carefully considered in these spillways. In this study, the three-dimensional flow filed of U-shaped spillway and end-sill of the side channel are simulated using Flow3D and the effect of flow turbulences have been modelled by RNG closure. Comparison of the numerical and experimental results revealed that this model with RNG closure has capable to carefully simulate the turbulence flow field on these structures. The effect of making stepped the ogee profile of the three-sided spillway on flow depth and dynamic pressure fluctuations has been numerically evaluated; the non-dimensional turbulence index has been used to investigate the fluctuations of the dynamic pressure. The results revealed making stepped the ogee profile causes to reduce the encounter of the side overfalls, and to increase the flow depth in the side channel, in which this lead to considerable decrease in pressure fluctuation intensity. Three-sided spillways are one of the important dam's outlet works that despite their hydraulic limitations, selected as the best option in storage dam under special topographical conditions. Considerable energy losses, the flow high turbulences, and applying great fluctuations shock on walls and bed of the side channel are the hydraulic conditions that must carefully considered in these spillways. In this study, the three-dimensional flow filed of U-shaped spillway and end-sill of the side channel are simulated using Flow3D and the effect of flow turbulences have been modelled by RNG closure. Comparison of the numerical and experimental results revealed that this model with RNG closure has capable to carefully simulate the turbulence flow field on these structures. The effect of making stepped the ogee profile of the three-sided spillway on flow depth and dynamic pressure fluctuations has been numerically evaluated; the non-dimensional turbulence index has been used to investigate the fluctuations of the dynamic pressure. The results revealed making stepped the ogee profile causes to reduce the encounter of the side overfalls, and to increase the flow depth in the side channel, in which this lead to considerable decrease in pressure fluctuation intensity. Three-sided spillways are one of the important dam's outlet works that despite their hydraulic limitations, selected as the best option in storage dam under special topographical conditions. Considerable energy losses, the flow high turbulences, and applying great fluctuations shock on walls and bed of the side channel are the hydraulic conditions that must carefully considered in these spillways. In this study, the three-dimensional flow filed of U-shaped spillway and end-sill of the side channel are simulated using Flow3D and the effect of flow turbulences have been modelled by RNG closure. Comparison of the numerical and experimental results revealed that this model with RNG closure has capable to carefully simulate the turbulence flow field on these structures. The effect of making stepped the ogee profile of the three-sided spillway on flow depth and dynamic pressure fluctuations has been numerically evaluated; the non-dimensional turbulence index has been used to investigate the fluctuations of the dynamic pressure. The results revealed making stepped the ogee profile causes to reduce the encounter of the side overfalls, and to increase the flow depth in the side channel, in which this lead to considerable decrease in pressure fluctuation intensity.
Language:
Persian
Published:
Quranic Knowledge Research, Volume:19 Issue: 1, 2019
Pages:
79 to 90
magiran.com/p2001449  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!