The Application of Simulation – optimization Approaches in Water Transmission Line of Bistoun Dam to Have Integrated Planning of Water Resource

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
The possible utilities of water resources systems are commonly used through several different models. There are two main categories of models including simulation and optimizing models. However, optimizing models are used to design water utility systems, hence; they are not more appropriate for large systems for water resources because they need a long-term application. In addition, sometimes the outputs from these models are uncertain. Thus, the simulation models can be used for utilizing water resources systems. WEAP is a common simulation model that is designed regarding the base flow water of rivers for urban, agriculture, independent basin and complex river along country borders. LINGO is an optimizing model that is the linear planning for the combination of production, investment, marketing, transportation, product formulation, multidirectional scheduling. The current study aims to simulate and optimize the application of the water of Biseton reservoir dam with and without upper being built dams using both LINGO and WEAP models for environment, agriculture and industry sectors.
Materials and Methods
Biseton reservoir dam and its transport systems are located to the southeastern of Kermanshah along the Kermanshah-Tehran main road at the Kurani- sofla village. Some part of this village is located within reservoir area. However, the water from Gamasiab River will be transferred to Biseton dam through stael pipe with 3.5 m3s-1 capacity during 6 months per year (early December to Jun). The Biseton dam construction is supposed to supply water for agriculture, industry and environment sectors. In this research, sustain distributing the water resources of Biseton dam for these three sectors were carried out using the WEAP and LINGO models. The minimum water for environment belongs to the aquatics of Gamasiab River. So that, the 40 years data of measured hydrology and rainfall (1972-2012) were analyzed by these models exploiting optimal water resources distribution to achieve integrated water resources management for agricultural, industrial and environmental needs.
Results and Discussion
The results of this research showed that with and without upper built dams, the water supply to Biseton dam is same which shows that the water supply is roughly the same for agriculture, industry and environment. There is about 2 million m3 water for environmental needs annually. Thus, considering the upper stream reservoirs, it is expected that water flow discharge of Gamasiab will reduce and leading to the decrease of environmental water. This situation is related to water storage in reservoir dams that are built in upper stream during rainfall seasons. Adversely, during dry months, the reserved water from these dams flowed down steam for environment needs. It is concluded that environmental water needs can be supplied during dry months. By and large, Biston dam and other similar dams contribute to water for environmental needs. Comparing this results with other similar researches in related to water resources showed that both WEAP and LINGO models are capable for planning and management of water resources in terms of distribution and supply considering different water usage scenario in current time and future.
Conclusions
In this research, a systematic approach including the dam outside the Bistoon bed and upstream dams has been used investigate the needs of agriculture, industry and its production. In this regard, simulation and optimization of the project was carried out in two moods by WEAP and LINGO approaches including the considering and without considering the dams of Gaman basin
Considering the results of this research, simulation and optimization water utilities of Biseton reservoir dam is applicable via LINGO and WEAP models assuming upper being built dams for environment, agriculture and industry sectors. Moreover, transferring and distributing the water through LINGO and WEAP models for agriculture and industry sectors are similar, while there is roughly higher estimated for environmental needs with built dams in upper stream. This situation is related to water storage in reservoir dams that is built in upper stream during rainfall seasons. Adversely, during dry months, the reserved water from these dams flowed down steam for environment needs which is estimated about 2 million m3 per year. It is concluded that environmental water needs can be supplied during dry months. The results of this study, with similar research, have managed to show the efficiency of WEAP and lingo models to help correct management of water resources and to control the crisis of water scarcity.
Language:
Persian
Published:
Geography and Sustainability of Environment, Volume:9 Issue: 31, 2019
Pages:
15 to 28
magiran.com/p2028515  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!