Laboratory Study of Broken Wave Force Damping by Submerged and Emergent Long Tree Canopies

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Forests as Green Belt reduce the height and energy of waves passing through them, reducing their ability to erode sediments and to cause damage to structures such as dikes and sea walls, (Mclvor and et all.,2012). It is well-accepted that wave attenuation by emergent and submerged vegetation is a function of plant characteristics as well as hydrodynamic conditions, (Augustin et al., 2009). (Hirashi and Harada, 2003) showed that the pressure difference on the sides of the green belt is mainly due to drag resistance. this study a new and unique method based on the principle of momentum and direct force measurement has been used to measure wave energy decay simulated by the Green Belt.Most previous studies have been conducted to analyze the wave forces on emergent structures and obstacles. Relative submergence is considered to be the relative roughness of trees and is a factor influencing the resistance of the forest to the passage of waves, (Davoudi et al., 2016). So the resistance of the canopies in the submerged state is one of the important factors in wave damping. Also, in previous studies, variable still water depth has been considered to create different ratios of submergence, which will change the characteristics of the wave. Therefore, in the present study, decided that the resistance of the canopy against broken waves in the submerged state would be determined by changing the height of the obstacles, which will be examined in this study (Figure 1).Figure 1-- Schematic view of the Rigid vegetation with different relative depth of submergence

Methodology

Experiments were conducted in the Hydraulic Modeling Laboratory of the Faculty of Water Engineering, Shahid Chamran University of Ahvaz, in a 8.3×0.8×0.55 rectangular flume called Knife Edge Flume. Flume has Plexiglas sidewalls and bed and designed to measure the force exerted by the wave force on the barriers at its shore by means of a dynamic load cell installed between the movable and fixed parts of the flume. At the beginning of the experiments, wooden circular cylinders with 1 cm in diameter, fixed parallel arrangement were placed in the moving part of the flume with constant slope of zero. By changing the height of obstacles and generating breaking waves with constant height the absorption force by the canopies was monitored via an electrical display connected to the dynamic load cell.

Results and Discussion

The submerged ratio of tree canopies is equal to height of inundation depth to height of trees. Therefore, in the submerged state, the ratio is greater than one, and in the emergent state it is less than one. What is important in this study is that different ratios of immersion with different heights of barriers have been created.

Language:
Persian
Published:
Irrigation and Drainage Structures Engineering Research, Volume:21 Issue: 80, 2021
Pages:
99 to 114
magiran.com/p2251630  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!