Laboratory Study of the Effects of Cyclic Stress Ratio and Non-Plastic Fine Content on the Liquefaction Potential of Non-Cohesive Soil

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Liquefaction is the primary cause of most earthquake-induced damages in saturated loose and medium-dense deposits. The literature on liquefaction potential has mainly focused on clean sand, and it has been assumed that liquefaction can take place only in sand, and fine- or coarse-grained soils cannot generate water-pore overpressure. However, after the occurrence of multiple earthquakes, it was found that non-plastic fine soils also have a significant liquefaction potential in addition to sands. A review of earlier literature showed no study on the effect of the cyclic stress ratio (CSR) on the critical silt content in the study of the liquefaction potential of sand with a fines content of equal to greater than 40% to 100% pure silt content. In other words, the mutual effects of CSR and non-plastic fine aggregates on liquefaction potential of sands with high fine aggregate content, especially pure silt, has not been studied up to this moment. Moreover, discrepancies exist between the results reported on the liquefaction potential of sand and silty sand containing 40% fines. This study investigates the effects of CSR and non-plastic fines on the liquefaction potential of silt and silty sand at a constant confining pressure through undrained cyclic triaxial tests. The test was repeated under the same conditions and steps at different cell pressures (CP) and bottom back pressures (BBP) to investigate the effects of pressure application steps in the saturation phase (Bvalue) of different soil types, from sand to slit, on the liquefaction potential and resulting strains, which had not been investigated before. The cyclic triaxial test was performed on non-plastic slit and Firuzkuh sand 161 according to ASTM D5311. The specimens with a diameter of 5 cm, a height of 10 cm, and a density (Dr) of 30% were prepared by wet tamping According to the results, the liquefaction resistance of sand decreased as the silt content increased up to 30% and then increased when the silt content increased to 60%. A relatively uniform behavior was observed when the slit content increased to 100% (pure slit); because, when the slit content of clean sand is increased to 30%, the fine slit particles fill the empty space between the coarse-grained sand particles, leading to a decrease in the soil drainage capacity during earthquake-induced vibrations or cyclic loading. Therefore, the liquefaction potential increased under these conditions; but the sand behavior was dominant until the particle content was increased to 30%. The soil behavior changed when the slit content exceeded 30%, and the fine-grained soil behavior was observed, declining the liquefaction potential. On the other hand, the CSR affected the liquefaction behavior of all soil specimens so that the fines content generating the maximum pore-water pressure (PWP) varied by increasing the CSR. The liquefaction curves were presented for different soil types. Four specimens with different silt contents showed different strain behaviors at different CSRs so that the strain path taken by the four soil types to reach ru = 1 is more uniform at CSR = 0.15 than CSR = 0.2. The effect of pressure applied to the soil structure in the saturation phase (Bvalue) on the liquefaction results and respective strains was insignificant for pure slit; but more tangible in silty sand and sand.

Language:
Persian
Published:
Earthquake Science and Engineering, Volume:8 Issue: 1, 2021
Pages:
53 to 63
magiran.com/p2287450  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!