The effect of chitosan-clay Nano composite, wax coatings and olive oilon some quality properties of sweet lemon during shelf life storage

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction 

Citrus are one of the major agricultural production available in the world and it is one of the popular fruits in the diet. The most well-known varieties of citrus fruits include oranges, lemons, grapefruits and tangerines. Cultivation of sweet lemon requires specific climate situation that it is found in many region of Iran. However, the high quality ones are in Jahrom, Ghsre Shirin, Dezfool, Jiroft and the Sorth of Iran. Two major limitation of long-term storage for citrus fruits are decay caused by pathogens, especially fungi, skin fruit damage and water loss, which can cause wrinkles and reduce product marketability and consumer acceptability. Edible coatings are one of the most effective methods to maintaining the fruit quality. Today edible coatings can preserve citrus quality and provide attractive approach to satisfactory performance. Chitosan is used for film or edible coatings to extend the shelf life of foods such as fruits, meat and fish and foods. The results of several studies indicate the effective role of chitosan in controlling fruit during storage. Wax in the fruit is used to prevent moisture loss and wrinkle of the fruit and also to maintain the appearance of the product and its marketability. So, the final goal of this study is investigate the effect of edible coatings (chitosan-clay Nano composite, Wax coatings and olive oil) on some quality attributes of sweet lemon during shelf life storage.

Materials and Methods

Sweet lemon's fruits (216 N.) were harvested randomly from a citrus orchard in Dezfool, Iran. The samples immediately sent into the laboratory for storage after necessary treatments. All fruits were disinfected by immersion in 4% chlorox for 3 minutes and then dried. Chitosan with low molecular weight (43 KD) was bought from Sigma Aldrich Company. Clay was purchased from Sefid Sang Aligoodarz Company in Iran and wax coating was provided from Pooshesh Hayat sabz company in Iran. The chitosan-clay coating was prepared by dissolving a mixture of chitosan (3w/v% to solution), clay (5, 10 and 15% wt to chitosan) and glycerol (10v/w% to chitosan) and tween 80(5% v/w to chitosan) in acid lactic solution (2%). Nano structure of chitosan-clay nano-composite was approved by XRD analysis. The chemical parameters of fruit juice such as TSS (%), pH(%) and TA (%) of lemon juice were measured. TSS was determined by digital refractometer (model MA882, made in Japan). pH was measured by pHmeter ( portable p-755 model) and TA was determined by AOAC standard method. The experiment was performed at three levels of chitosan-clay nanocomposite, olive oil, Carnoba wax and uncoated samples during 12 days shelf life storage. The experimental design was factorial based on completely randomized design with three replications. Limon samples were maintained at ambient temperature of 25 ℃ and relative humidity of 80-85%. Chemical characteristics (pH, citric acid, fruit juice TSS, vitamin C) and mechanical characteristics (weight loss percentage, sphericity coefficient, maximum shear force, maximum fracture force and maximum tensile strength of the fruit skin) were measured during storage.

Results and Discussion

The results of experiments showed that the trend of changes in vitamin C content decreased during storage. But this decrease was slower in the different percentages of chitosan-clay, olive oil coating and carnoba wax than in the control samples. The results showed the significant differences at 1% and 5% levels between different coatings at maximum fracture force, percent weight loss and pH. In addition, the effect of storage times on TSS, pH and maximum fracture force was significant. The lowest and highest percentage of weight loss for uncoated samples and olive oil coating were 12.3% and 10.23%, respectively. Results showed that the coated fruits had the better performance in preserving the quality of properties than the uncoated samples and 5% chitosan-clay nanocomposite coatings were higher performance than the other coatings.

Conclusion

In this study, the effect of chitosan-clay nanocomposite, olive oil, Carnoba wax and uncoated samples during 12 days shelf life storage on Chemical characteristics (pH, citric acid, fruit juice TSS, vitamin C) and mechanical characteristics (weight loss percentage, sphericity coefficient, maximum shear force, maximum fracture force and maximum tensile strength of the fruit skin) were investigated. The results of this study showed that 5% chitosan-clay nanocomposite coatings were higher performance than the other coatings.

Language:
Persian
Published:
Journal of Agricultural Engineering, Volume:43 Issue: 3, 2021
Pages:
331 to 348
magiran.com/p2309173  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!