Community behavior for mathematical model of coronavirus disease 2019 (COVID-19)

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
BACKGROUND AND OBJECTIVES

The spread of COVID-19 is very fast because it is transmitted from human to human. Non-pharmaceutical control is one of the important actions in reducing the spread of COVID-19, such as the use of masks and physical distancing. This study aims to model COVID-19 by incorporating people''s habits as a non-pharmaceutical preventive measure. The model formed emphasizes the importance of preventing with masks and physical distancing. The implication of this action is that the infected population is decreasing, resulting in less interaction between the susceptible and the infected. In this case, the virus has not vanished from the community, but the use of masks in certain populations or subpopulations is lower than before, which can reduce mask waste in the environment.

METHODS

This study expands on a previous MERS-CoV research model using the susceptible-exposed-infected-quarantine-recovery model by incorporating behavioral control, specifically the use of masks and physical distancing as preventive measures. The susceptible population that interacts with the carrier/exposed and infected population is used to calculate mask use. The susceptible population was divided into two subpopulations based on their willingness to wear masks. The following breakthrough is the application of the same system to the infected population, which is required to wear masks at all times during their self-isolation period. The model-generated equation system is a nonlinear system of differential equations. The developed model is examined by determining the equilibrium point and the basic reproduction number.

FINDINGS

The model resulted an asymptotically stable disease-free equilibrium and endemic equilibrium. The disease-free stability is only examined if the compliance with physical distancing exceeds 0.55 and the compliance with the use of distancing exceeds 0.55. This compliance condition resulted in a decrease in basic reproduction number ranging from 0.48 to 0.07. The endemic stability is only investigated if compliance with physical distancing is 0.1 and compliance with use of distancing is 0.2. The endemic condition can arise if masks and physical separation are not used. Physical distancing compliance and mask use have values less than 0.1 and 0.2, respectively.

CONCLUSION

The analysis of the equilibrium points and basic reproduction numbers, show that increasing compliance in carrying out the health protocol measures of physical distancing and mask use causes a decrease in the spread of COVID-19, so that the disease will disappear over time.

Language:
English
Published:
Global Journal of Environmental Science and Management, Volume:8 Issue: 2, Spring 2022
Page:
1
magiran.com/p2349263  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!