Numerical simulation of the effect of particle size distribution and boundary conditions on the behavior of stone columns using DEM

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Summary

In this study, using the DEM (which exhibits suitable abilities to simulate the mechanical behavior of discrete media), the bearing capacity of a stone column has been modeled. The results showed that increasing the diameter of the stone column increases the bearing capacity and the trapped stone column has between 25 to 30% more bearing capacity than the floating stone column. 

Introduction

It is necessary to study the actual behavior of stone columns in different boundary conditions and soils and against incoming loads. In this regard, researchers have used laboratory tools to study the performance of these columns. However, due to some limitations of laboratory methods, it is impossible to control all effective microstructural parameters in understanding stone column behavior. In this regard, some numerical studies based on the continuum mechanics were performed. Numerical modeling based on the mechanics of continuous media has provided valuable results on subsidence, lateral deformation, and stress-strain diagrams based on macroscopic behavior. However, stone columns are generally composed of washed sand materials and their behavioral nature is distinct sometimes their behavior depends on the performance of their particles in interaction with loose soil particles and it is not possible to accurately evaluate the performance of stone columns using finite element modeling. The discrete component method has been considered as the purpose of this research. 

Methodology and Approaches

The dimensions of the model were selected due to the limited number of particles due to the increase in the time of analysis on the scale of the laboratory physical model. These dimensions are determined in such a way that, with a scale of 20 times, they are similar to real projects and represent the diameter of a column of 1 meter with a length of 6 meters in reality. To eliminate the effects of lateral borders on the results, the distance of the borders from the center of the stone column was considered to be 5 times the diameter of the column. A behavioral model with rolling resistance was used. 

Results and Conclusions

The modeled stone column is a tall stone column. Because the soil around the stone column is loose, the failure of the stone column is in the form of lateral expansion, which in this form is the tendency of the main force chains. The tall stone column, without lateral restraint, which rests on the trapped end and the forces are transmitted along with them, acted like a tall and thin column, which if its axis exceeds the thinness of the column. The buckle follows it. Evaluation of the behavior of the stone column can be simulated with the DEM, and micro-mechanical evaluations, especially the buckling of force-carrying chains and the path of particles can be observed. Also, the reduction of particle size has limited effects on reducing the bearing capacity of the loose stone-soil column complex.

Language:
Persian
Published:
Journal of Aalytical and Numerical Methods in Mining Engineering, Volume:12 Issue: 30, 2022
Pages:
31 to 43
magiran.com/p2436269  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!