Acoustic properties of 3D printed bio-degradable micro-perforated panels made of Corkwood Fiber-Reinforced composites

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Micro perforated panel (MPP) absorbents promise the next generation of sound absorbers as they have significant advantages over other porous adsorbents. In this study, we will investigate the acoustic performance of MPP absorbents made of biodegradable polylactic acid composite reinforced with natural corkwood fibers (PLA/Corkwood) by 3D printing technology.

Material and Methods

First, the effective dimensional characteristics of the parameters were determined, then, all of the samples were fabricated by the Zortrax M200 3D-Printer using the FDM method. The normal incidence sound absorption coefficient of the samples was measured using an acoustic impedance tube according to ISO 10534-2 in the frequency range of 64 to 1600 Hz. Then the effect of four geometric parameters, including hole diameter, panel thickness, perforation ratio, and air gap depth, on the absorption coefficient was studied.

Results

The findings show that the SL-MPP 12 absorbent has the highest average sound absorption coefficient (SACA) with a value of 0.28, so that at a frequency of 804 Hz it has the highest sound absorption equal to 0.91. The parametric study found that as the hole diameter increased, the values of peak adsorption and average absorption coefficient were decreased. Increasing the MPP thickness causes the absorption peak to move towards the lower frequency range. Decreasing the perforation ratio increases the peak absorption values and the average sound absorption, and the frequency with the highest absorption also moves towards the higher frequency range. The resonant frequency also depends on the depth of the air gap behind the screen. Changes in air gap depth from 30 mm to 70 mm reduced the resonant frequency by more than 35%.

Conclusion

Using 3D printing technology, sustainable MPP can be fabricated with more quality and in less time than traditional methods such as mixing and heat pressing.

Language:
Persian
Published:
Journal of Health and Safety at Work, Volume:12 Issue: 2, 2022
Pages:
367 to 383
magiran.com/p2447753  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!