Changes in The Hydrocarbon Pollution Rate of Soil Containing Biochar Modifier (Case Study: Soil Around Shiraz Refinery)

Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:
Background and objectives

Hydrocarbons derived from petroleum and gas have gained increased attention as the most important fossil resources of energy as well as crude material for petrochemical industries. However, environmental issues such as pollution due to extraction, exploitation and transportation of these materials has raised concerns as an environmental warning. In recent years, utilization of biochar (via biomass burning) has been regarded as a soil refiner to reduce or eliminate pollution, especially in in situ studies. Biochar is a product rich in carbon, which is produced during the pyrolysis of various types of woods, fertilizers, leaves, straws as well as agricultural wastes under abiotic conditions. It seems that biochar can be suggested as a suitable compound to manage biomass wastes as well as to enhance soil fertility. Thus, kinetic behavior of biochar in reduction of gasoil pollution of soil, its changes of this pollutant over time and changes in the microbial activity in this time period were investigated.

Materials and methods

The soil polluted with gasoil was collected from the vicinity of the gasoil tanker located in Shiraz refinery. The soil had been polluted for years due to the leakage of gasoil. Then, after the measurement of the initial total petroleum hydrocarbon content and physical and chemical properties (soil texture via hydrometry, electrical conductivity in the saturated paste, available phosphorous using the Olsen method, total nitrogen using the Kjehdahl method, pH of soil in the saturated paste, soil carbon using the Walkey and Black method) of the polluted soil, 700 gram soil samples containing wheat straw biochar at one and two mm sizes and 20, 40, 60, 80 and 100 g kg-1 weight doses were prepared as split-split-plot experiment based on a completely randomized design with three replicates. The samples were then rested in a 50% constant humidity for four weeks at 28 ± 2 °C, and were aerated two times a week. Finally, the results of the changes in the total petroleum hydrocarbon and microbial activity over time were recorded. A three- parameter sigmoidal function was fitted to the data related to the total petroleum hydrocarbon and microbial activity over time. Analysis of variance was carried out using the SAS software v. 9.0. The leas significant difference method (LSD) was used to compare the means. The changes in the total petroleum hydrocarbons and microbial activity were analyzed using the SigmaPlot software v. 12.5. Microsoft Excel v. 2013 and SigmaPlot v. 12.5 were used to draw the figures.

Results

According to the results of the present study, the application of biochar had a significant effect on the reduction of gasoil pollution of the soil. The results related to determination of the kinetic model for the reduction of pollution during the biochar application process showed that the kinetic of reduction in total petroleum hydrocarbon was of first order equation; so that in the first 28 days of the experiment, the rate of total petroleum hydrocarbon degradation was increasing, whereas it decreased 35 days after the beginning of the experiment. Biodegradation constant (k) was higher for the soil treated with the refiner and these soils had a lower half-life compared with the polluted control. The rate of reduction in half-life and Biodegradation constant rate increased with increasing refiner weight. On the contrary, half-life increased and Biodegradation constant decreased with increasing refiner size. The results indicated a significant difference in the traits as a result of applying various sizes and weights of refiner. Weekly monitoring of the pollution degradation and bioremediation performance in all refiner sizes and weights showed that the lowest time to 50% pollutant removal was obtained in 100g kg-1 and 1 mm size treatment. Investigation of the respiration under the mentioned conditions showed that the lower sizes and higher weights of biochar led to improved hydrocarbon degradation. Also, according to the results, biological efficiency (E%) of biochar was calculated 40.05 at the end of the 60 day period.

Conclusion

According to the present study, biochar refiner has a great potential for utilization as a cheap and relatively new strategy to eradicate or reduce soil hydrocarbon pollution. This method is compatible with the in situ bioremediation in the soils polluted with petroleum and other petroleum derivate compounds, due to being less costly and posing less hydrocarbon threat to the environment. It is also a suitable tool to devise bioremediation strategies.

Language:
Persian
Published:
Journal of Agricultural Engineering, Volume:45 Issue: 4, 2023
Pages:
409 to 424
magiran.com/p2614381  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!