HivNet: Studying in depth the morphology of HIV-1 virion using Deep Learning

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Purpose

Human Immunodeficiency Virus (HIV) continues to be a disease that kills thousands of individuals each year. The HIV infection is incurable. However, HIV infection has turned into a treatable chronic health condition because of improved access to efficient HIV prevention, diagnosis, treatment, and care. Transmission Electron Microscopy’s (TEM) ability to directly visualize virus particles and distinguish ultrastructure morphology at the nanometer scale, makes it useful in HIV-1 research where it is used for assessing the actions of inhibitors that obstruct the maturation and morphogenesis phases of the virus lifecycle. Hence with its use, the disease's serious stage can be avoided by receiving an early diagnosis.

Materials and Methods

Through the dedicated use of computer vision frameworks and machine learning techniques, we have developed an optimized low-computational-cost 8-layer Convolutional Neural Network (CNN) backbone capable of classifying HIV-1 virions at various stages of maturity and morphogenesis. The dataset including TEM images of HIV-1 viral life cycle phases is analysed and augmented through various techniques to make the framework robust in real-time. The CNN layers then extract pertinent disease traits from TEM images and utilise them to provide diagnostic predictions.

Results

It was discovered that the framework performed with an accuracy of 99.76% on the training set, 85.83% on the validation set, and 91.33% on the test set, after being trained on a wide range of micrographs which comprised of different experimental samples and magnifications.

Conclusion

The suggested network's performance was compared to that of other state-of-the-art networks, and it was discovered that the proposed model was undisputed for classifying TEM images of unseen HIV-1 virion and required less time to train and tweak its weights. The framework can operate more effectively than machine learning algorithms that consume a lot of resources and can be deployed with limited computation and memory resource requirements.

Language:
English
Published:
Frontiers in Biomedical Technologies, Volume:10 Issue: 4, Autumn 2023
Pages:
480 to 488
magiran.com/p2633108  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!