The effect of n-butanol and dimethyl carbonate additives as biodiesel fuel additives on diesel engine performance and emissions

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Diesel engines are considered the main sources of energy production and diesel fuel consumption. The use of biodiesel fuel as a part of diesel engines can have a positive effect on reducing the use of fossil resources and the emission of pollutants. Using biodiesel fuel, along with its advantages, has disadvantages such as increasing the emission of nitrogen oxides, which is considered a toxic gas. Many researchers have proposed different additives to cover some of the disadvantages of biodiesel fuel. In this article, two types of oxygen additives, including dimethyl carbonate and n-butanol, were combined with small amounts in B2 (2% biodiesel and 98% diesel) and B5 (5% biodiesel and 95% diesel) fuels. Using small amounts of these additives can reduce the cost of fuel production. Based on the obtained results, B2D10N10 and B2D10N0 fuel samples were able to increase the braking power of the diesel engine by about 12 and 10%, respectively, compared to B2 fuel. On the other hand, the use of fuel samples containing dimethyl carbonate and n-butanol additives in B2 fuel reduced the special brake fuel consumption by about 18% compared to diesel fuel and about 32% Diesel engines are considered the main sources of energy production and diesel fuel consumption. The use of biodiesel fuel as a part of diesel engines can have a positive effect on reducing the use of fossil resources and the emission of pollutants. Using biodiesel fuel, along with its advantages, has disadvantages such as increasing the emission of nitrogen oxides, which is considered a toxic gas. Many researchers have proposed different additives to cover some of the disadvantages of biodiesel fuel. In this article, two types of oxygen additives, including dimethyl carbonate and n-butanol, were combined with small amounts in B2 (2% biodiesel and 98% diesel) and B5 (5% biodiesel and 95% diesel) fuels. Using small amounts of these additives can reduce the cost of fuel production. Based on the obtained results, B2D10N10 and B2D10N0 fuel samples were able to increase the braking power of the diesel engine by about 12 and 10%, respectively, compared to B2 fuel. On the other hand, the use of fuel samples containing dimethyl carbonate and n-butanol additives in B2 fuel reduced the special brake fuel consumption by about 18% compared to diesel fuel and about 32% compared to B2 fuel. Using the combined additives of dimethyl carbonate and n-butanol increased the thermal efficiency by an average of 15-30% compared to diesel, B2, and B5 fuels. The addition of dimethyl carbonate and n-butanol in combination in small amounts significantly reduced carbon monoxide emissions. The highest amount of carbon dioxide emission occurs in fuels containing the combined compounds of dimethyl carbonate, n-butanol, and B5, which was about 10-15% higher than the control sample. During the optimization process, the B2D3N2 fuel sample was selected as the optimal formulation in combining diesel fuel, biodiesel, dimethyl carbonate, and n-butanol.
Language:
Persian
Published:
Fuel and Combustion, Volume:15 Issue: 4, 2023
Pages:
83 to 107
magiran.com/p2639698  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!