The Effects of Land Use Conversion from Pasturelands to Croplands on Soil Microbiological and Biochemical Indicators

Message:
Abstract:
In this study the effects of land use changes from pasturelands to croplands on soil microbiological and biochemical properties were studied in Kangaver, Dehno and Soltanye regions. Composite soil samples from 0-20 and 20-40 cm depths of pasture and cultivated lands were taken from Kangaver, Dehno and Soltanye regions, and soil microbial respiration, microbial biomass C and N, and urease, alkaline phosphatase, saccharase and arylsulfatase activities were determined. Results showed that land use changes from pasture to arable lands resulted in a significant reduction of microbial respiration in Kangaver (36-64%), Dehno (45-60%) and Soltanye (34%) regions. Similarly, substrate-induced respiration (SIR) decreased between 13 to 37% due to land use changes in all the three regions studied. The microbial biomass C (30-60%), N (18-56%) and C/N ratios (9-17%) in the two soil depths of cultivated sites were lower than those of forest sites in the three regions while metabolic quotient (36-95%), the portion of carbon (4-60%) and nitrogen (3-76%) of microbial biomass in total soil and percentage mineralized C (36-95%) in all the three regions increased due to land use changes. The assay of enzyme activities showed that alkaline phosphatase in both soil depths did not change substantially for each region. In Soltanye region, urease activity decreased (18%) only in the 0-20 cm depth and land use effects were not significant for the other enzymes. Conversion of pastures to agricultural lands in Kangaver region resulted significant decreases in urease (20%), saccharase (33%) and arylsulfatase (11%) activities in the surface layer, but not in the 20-40 cm depth. In Dehno, increased urease and arylsulfatase activities in both soil depths due to land use changes from pastures to cultivated lands were significant, but increased saccharase activity was significant only in the 0-20 cm depth. Overall, it is concluded that a change in land use from pastures to croplands with widespread agricultural practices, specifically long-term intensive tillage activities, may lead to enhanced availability of oxygen and substrate to microorganisms, which could result in increased microbial activity including soil respiration.
Language:
Persian
Published:
Journal of water and soil, Volume:25 Issue: 3, 2011
Page:
548
magiran.com/p906941  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!