|  درخواست عضويت  |  رمز خود را فراموش کرده ايد؟  |  ورود اعضا [Sign in]
جستجوي پيشرفته مطالب   |  
 جستجو:  
magiran.com >  مجله هوش مصنوعي و داده كاوي >سال ششم، شماره 2 > متن
مشخصات نشريه
آخرين شماره
آرشيو شماره هاي گذشته
جستجوي مطالب
سايت اختصاصي
تماس با نشريه
ارسال الکترونيکي مقاله
شماره جديد اين نشريه
سال ششم
شماره 2
Summer - Autumn 2018


 راهنمای موضوعی نشريات
اين نشريه در گروه(های) زير قرار گرفته است:
1 برق

خدمات سايت




 


Journal of Artificial Intelligence and Data Mining, 2018(Issue 2)



Title:
Extracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem


Author(s):
S. Miri Rostami *, M. Ahmadzadeh

Paper language: English


Abstract:
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue for researchers. This study aims to develop a predictive model for 5-year survivability of breast cancer patients and discover relationships between certain predictive variables and survival. The dataset was obtained from SEER database. First, the effectiveness of two synthetic oversampling methods Borderline SMOTE and Density based Synthetic Oversampling method (DSO) is investigated to solve the class imbalance problem. Then a combination of particle swarm optimization (PSO) and Correlation-based feature selection (CFS) is used to identify most important predictive variables. Finally, in order to build a predictive model three classifiers decision tree (C4.5), Bayesian Network, and Logistic Regression are applied to the cleaned dataset. Some assessment metrics such as accuracy, sensitivity, specificity, and G-mean are used to evaluate the performance of the proposed hybrid approach. Also, the area under ROC curve (AUC) is used to evaluate performance of feature selection method. Results show that among all combinations, DSO + PSO_CFS + C4.5 presents the best efficiency in criteria of accuracy, sensitivity, G-mean and AUC with values of 94.33%, 0.930, 0.939 and 0.939, respectively.

Keywords:
breast cancer; survival; class imbalance problem; oversampling technique; Feature selection
 

دوست گرامي:

    با تشکر از همراهي شما به اطلاع مي رساند مطالعه متن مقالات نشريات و خدمات اختصاصي اين سايت تنها براي اعضا و با پرداخت حق عضويت (اشتراک طلايي) امکان پذير است.

  هزینه حق عضویت سالانه(اشتراک طلایی):

  • مشترکان داخل کشور     250.000 ريال (100 مقاله اعتبار اولیه) پرداخت با همه کارتهای بانکی
  • مشترکان خارج از کشور   50 دلار  (100 مقاله اعتبار اولیه) پرداخت با  Paypal
  اگر عضو سايت هستيد:
     شناسه کاربري:
     رمز عبور:

  اگر عضو سايت نيستيد:
شما با تکميل فرم عضويت و تاييد نشاني ايميل خود در سايت "بانک اطلاعات نشريات کشور magiran.com"  مي توانيد از امکانات اختصاصي اين سايت به شرح زير استفاده نماييد.:
  • دسترسي به متن مقالات پس از پرداخت حق عضويت و فعال سازی اشتراک طلايي
  • استفاده از  فروشگاه سايت و سفارش اينترنتي اشتراک نسخه چاپي نشريات با 10 درصد تخفيف
  • ايجاد فهرست نشريات مورد علاقه براي دسترسي سريع
  • اطلاع از انتشار نشريات مورد علاقه از طريق پست الکترونيکي
  • دريافت روزانه سرخط مطالب روزنامه هاي عضو بر اساس کلمات انتخابي خودتان تا سقف 10 عنوان


آيا مايل به عضويت در بانک اطلاعات نشريات کشور هستيد؟ 
(رايگان)

          

 



 

 

 
 
ارسال مطلب به دوستان
نظر بدهيد
ثبت در فهرست علائق

معرفی سايت به ديگران
گزارش اشکال در اطلاعات
اشتراک نشريات ديگر
 جستجوی مطالب
کلمه مورد نظر خود را وارد کنيد

جستجو در:
آرشيو اين مجله
همه مجلات عضو
مجلات علمی مصوب
متن روزنامه های عضو
    
جستجوی پيشرفته



 

اعتماد
ايران
جام جم
دنياي اقتصاد
رسالت
شرق
كيهان
 پيشخوان
مجله اقتصاد و توسعه كشاورزي
متن مطالب شماره 2 (پياپي 3202)، تابستان 1397را در magiran بخوانيد.

 

 

 

سايت را به دوستان خود معرفی کنيد    
 1397-1380 کليه حقوق متعلق به سايت بانک اطلاعات نشريات کشور است.
اطلاعات مندرج در اين پايگاه فقط جهت مطالعه کاربران با رعايت شرايط اعلام شده است.  کپی برداري و بازنشر اطلاعات به هر روش و با هر هدفی ممنوع و پيگيرد قانوني دارد.
 

پشتيبانی سايت magiran.com (در ساعات اداری): 77512642  021
تهران، صندوق پستی 111-15655
فقط در مورد خدمات سايت با ما تماس بگيريد. در مورد محتوای اخبار و مطالب منتشر شده در مجلات و روزنامه ها اطلاعی نداريم!
 


توجه:
magiran.com پايگاهی مرجع است که با هدف اطلاع رسانی و دسترسی به همه مجلات کشور توسط بخش خصوصی و به صورت مستقل اداره می شود. همکاری نشريات عضو تنها مشارکت در تکميل و توسعه سايت است و مسئوليت چگونگی ارايه خدمات سايت بر عهده ايشان نمی باشد.



تمامي خدمات پایگاه magiran.com ، حسب مورد داراي مجوزهاي لازم از مراجع مربوطه مي‌باشند و فعاليت‌هاي اين سايت تابع قوانين و مقررات جمهوري اسلامي ايران است