فهرست مطالب

Journal Of Industrial Engineering International
Volume:12 Issue: 1, Winter 2016

  • تاریخ انتشار: 1394/12/11
  • تعداد عناوین: 10
|
  • Arian Hafezalkotob, Ashkan Hafezalkotob * Pages 1-13

    Selection of appropriate material is a crucial step in engineering design and manufacturing process. Without a systematic technique, many useful engineering materials may be ignored for selection. The category of multiple attribute decision-making (MADM) methods is an effective set of structured techniques. Having uncomplicated assumptions and mathematics, the MULTIMOORA method as an MADM approach can be effectively utilized for materials selection. In this paper, we developed an extension of MULTIMOORA method based on Shannon entropy concept to tackle materials selection process. The entropy concept was considered to assign relative importance to decision-making attributes. The proposed model consists of two scenarios named the weighted and entropy-weighted MULTIMOORA methods. In the first scenario, subjective weight was considered in the formulation of the approach like most of conventional MADM methods. The general form of entropy weight that is a combination of subjective and objective weighting factors was employed for the second scenario. We examined two popular practical examples concerning materials selection to show the application of the suggested approach and to reveal the effect of entropy weights. Our results were compared with the earlier studies.

    Keywords: Multiple attribute decision making, MULTIMOORA, Shannon entropy, Materials selection
  • Saurabh Agrawal *, Rajesh K. Singh, Qasim Murtaza Pages 15-27

    Electronics industry is one of the fastest growing industries in the world. In India also, there are high turnovers and growing demand of electronics product especially after post liberalization in early nineties. These products generate e-waste which has become big environmental issue. Industries can handle these e-waste and product returns efficiently by developing reverse logistics (RL) system. A thorough study of critical success factors (CSFs) and their ordered implementation is essential for successful RL implementation. The aim of the study is to review the CSFs, and to prioritize them for RL implementation in Indian electronics industry. Twelve CSFs were identified through literature review, and discussion with the experts from the Indian electronics industry. Fuzzy-Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach is proposed for prioritizing these CSFs. Perusal of literature indicates that fuzzy-TOPSIS has not been applied earlier for prioritization of CSFs in Indian electronics industry. Five Indian electronics companies were selected for evaluation of this methodology. Results indicate that most of the identified factors are crucial for the RL implementation. Top management awareness, resource management, economic factors, and contracts terms and conditions are top four prioritized factor, and process capabilities and skilled workers is the least prioritized factor. The findings will be useful for successful RL implementation in Indian electronics industry.

    Keywords: Reverse logistics . Critical success factors . Indian electronics industry . Environment . Fuzzy TOPSIS
  • Mehdi Seifbarghy *, Masoud Mirzaei Kalani, Mojtaba Hemmati Pages 29-43

    This paper formulates a two-echelon single-producer multi-buyer supply chain model, while a single product is produced and transported to the buyers by the producer. The producer and the buyers apply vendor-managed inventory mode of operation. It is assumed that the producer applies economic production quantity policy, which implies a constant production rate at the producer. The operational parameters of each buyer are sales quantity, sales price and production rate. Channel profit of the supply chain and contract price between the producer and each buyer is determined based on the values of the operational parameters. Since the model belongs to nonlinear integer programs, we use a discrete particle swarm optimization algorithm (DPSO) to solve the addressed problem; however, the performance of the DPSO is compared utilizing two well-known heuristics, namely genetic algorithm and simulated annealing. A number of examples are provided to verify the model and assess the performance of the proposed heuristics. Experimental results indicate that DPSO outperforms the rival heuristics, with respect to some comparison metrics.

    Keywords: Vendor, managed inventory . Economic production quantity . Supply chain . Particle swarm optimization
  • Moghadaseh Vafaeinezhad, Reza Kia *, Parisa Shahnazari Shahrezaei Pages 45-60

    Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and worker assignment is implemented with uncertain scenario-based data. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all possible future scenarios. In this research, miscellaneous cost parameters of the cell formation and demand fluctuations are subject to uncertainty and a mixed-integer nonlinear programming model is developed to formulate the related robust dynamic cell formation problem. The objective function seeks to minimize total costs including machine constant, machine procurement, machine relocation, machine operation, inter-cell and intra-cell movement, overtime, shifting labors between cells and inventory holding. Finally, a case study is carried out to display the robustness and effectiveness of the proposed model. The tradeoff between solution robustness and model robustness is also analyzed in the obtained results.

    Keywords: Dynamic cell formation problem . Scenariobased robust optimization . Mixed, integer nonlinear model . Worker assignment
  • Maghsoud Amiri, Mostafa Khajeh * Pages 61-69

    Bi-objective optimization of the availability allocation problem in a series–parallel system with repairable components is aimed in this paper. The two objectives of the problem are the availability of the system and the total cost of the system. Regarding the previous studies in series–parallel systems, the main contribution of this study is to expand the redundancy allocation problems to systems that have repairable components. Therefore, the considered systems in this paper are the systems that have repairable components in their configurations and subsystems. Due to the complexity of the model, a meta-heuristic method called as non-dominated sorting genetic algorithm is applied to find Pareto front. After finding the Pareto front, a procedure is used to select the best solution from the Pareto front.

    Keywords: Availability allocation . Series, parallel system . Repairable components . NSGA II
  • Madhu Jain, Ragini Mittal * Pages 71-80

    The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adjust threshold to control the admission. To give the priority to handoff calls over the new calls, the provision of guard channels and subrating scheme is taken into consideration. The handoff voice call may balk and renege from the system while waiting in the buffer. An iterative algorithm is implemented to generate the arrival rate of the handoff calls in each cell. Various performance indices are established in term of steady state probabilities. The sensitivity analysis has also been carried out to examine the tractability of algorithms and to explore the effects of system descriptors on the performance indices.

    Keywords: Cellular network . Admission control . Handoff priority . Handoff guarantee . Guard channel . Subrating . Balking . Reneging . Blocking
  • Morteza Shafiee *, Farhad Hosseinzadeh Lotfi, Hilda Saleh, Mehdi Ghaderi Pages 81-91

    One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856–864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.

    Keywords: Bi, level programming . DEA . Mixed integer programming . Stackelberg equilibrium . Game theory . Decentralized decision making structure . Bank performance evaluation
  • Michael Kanisuru Adeyeri *, Khumbulani Mpofu, Buliaminu Kareem Pages 93-109

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers’ demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

    Keywords: Maintenance model  Agent hardware, system  Conventional machines  Machine conditions, Monitoring
  • Nafissa Rezki *, Okba Kazar, Leila Hayet Mouss, Laid Kahloul, Djamil Rezki Pages 111-118

    The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.

    Keywords: Multivariate process . Hotelling T2 control chart . Multi, agent system . Bayesian network . Neural network
  • Afshin Esmaeilzadeh, AtaAllah Taleizadeh Pages 119-135

    In this research, the optimal pricing decisions for two complementary products in a two-echelon supply chain under two scenarios are studied. The proposed supply chain in each echelon includes one retailer and two manufacturers and the same complementary products are produced. In the first scenario, we assume the unit manufacturing costs of the complementary products in each echelon are the same, while in the second one the different unit manufacturing costs are supposed and lead to demand leakage from the echelon with the higher unit manufacturing cost to the echelon with the lower unit manufacturing cost. Moreover, under the second scenario, the products with lower price are replaced with the higher price products. The purpose of this study is to analyze the effects of different market powers between the manufacturers and the retailer and the demand leakage on the optimal wholesale and retail prices and also on the profit of the chain. The relationships between the manufacturers and the retailer are modeled by the MS-Stackelberg and MS-Bertrand game-theoretic approach where the manufacturers are leaders and the retailers are followers.

    Keywords: Pricing . Complementary products . Market power . MS, Stackelberg game . MS, Bertrand game