فهرست مطالب

Automotive Science and Engineering
Volume:13 Issue: 2, Spring 2023

  • تاریخ انتشار: 1402/03/11
  • تعداد عناوین: 6
|
  • J Bidadi, H Hampaiyan Miandowab, H Saeidi Googarchin* Pages 4085-4091

    The aim of the study was to examine the deformation modes and also degradation of an adhesively bonded rectangular cross section beam used in the automotive body structure. The study included: (1) performing new experimental investigations on the three-point bend behavior of a rectangular cross section beam made by adhesive bonding method. (2) developing a finite element (FE) model to predict the mechanical load displacement behavior and also the degradation modes (i.e. delamination between the adhesive layer and beam wall). The agreement between experimental and FE results demonstrates that the investigated structural element's numerical model was created utilizing accurate assumptions. Finally, the effects of beam wall thickness and overlap length have been investigated in a parametric study using the validated FE model. It was shown that increasing the beam wall thickness resulted in delamination between the adhesive layer and beam wall.

    Keywords: Thin-walled beamAdhesive jointEnergy absorptionCohesive zone model (CZM)Automotive bumper beam
  • Abbas Zarenezhad Ashkezari*, Reza Zirak Pages 4092-4101

    In the present study, different regimes of wall impingement in biodiesel spray were investigated in terms of emissions of diesel engines and performance and the best model for simulating the DI diesel engines fueled by biodiesel blends was presented. As shown by the findings, all aspects of wall impingement were considered in Walljet model, and it properly predicted the fuel droplet size generated by decomposition and penetration. Thus, it is possible to use it for simulating the biodiesel fuel spray atomization at varying engine operating conditions through the adjustment of the model constants.

    Keywords: SprayWall impingementExhaust CombustionBiodiesel
  • Hamidreza Ebrahimi, Mohammadhassan Shojaeifard, Salman Ebrahimi-Nejad* Pages 4102-4109

    The present study aims to optimize a two-chamber muffler’s geometry and improve its acoustic performance. Mufflers with a circular cross-section are used in this study and then underwent the vibroacoustic analysis using COMSOL Multiphysics software. Several geometries, including a reference model and new ones, are designed and their geometry is optimized by Parametric and grid optimization methods, which are the software’s optimization methods. First, the reference paper is validated to ensure the simulation produces the least error. The results obtained in this study have a good match with those of the reference. Then, by changing dimensions such as length, diameter, and inner design of the mufflers, the best geometry in terms of transmission loss and bandwidth was selected and compared with the results acquired by the reference model. It was found that the acoustic performance of the optimized design (two-chamber muffler with four inner tubes) outperforms the model used in the reference. That is, the results indicate that the optimized design is able to attenuate sound up to 78dB in the range of 0 to 500Hz, 45dB higher than that of the conventional model. Further, the muffler’s weight is reduced by a quarter, using a 0.9mm thickness.

    Keywords: Single-chamber muffler, Two-chamber muffler, Improved silencer, Weight loss, Performance improvement
  • Farid Raoof, Javad Rezapour*, Sina Gohari Rad, Reza Rajabiehfard Pages 4110-4118

    Thin-walled tubes can avoid the transition of injurious acceleration and excessive forces to the protected section and minimize the damage severity. They absorb energy under axial loading circumstances as crashworthiness structures. The present study deals with the investigation of the density effects of foam on the quasi-static loading response of foam filled and empty cylindrical tubes. To investigate energy absorption parameters by varying in foam density, two different densities of polyurethane foam were used to evaluate the efficacy of polyurethane foam density under axial quasi-static loading. According to the results, the use of foam as a filler also influences the tubes’ deformation behavior in addition to the effects of thickness. It was revealed that by incrementing the thickness to 20%, the peak load increased by 25.2%. Two densities of foam were considered as 40 and 85kg/m3 to assess the effect of density of polyurethane foam as filler on the energy absorption behavior of tubes under axial loading. Result showed that when foam density increased by about two times, the peak load increased by 1%. According to the results, filling tube by foam also influences the tubes deformation behavior in addition to the effects of thickness

    Keywords: Polyurethane foam, Foam filled cylindrical tubes, Foam density, Axial loading, Crashworthiness
  • Hamid Rahmanei*, Abbas Aliabadi, Ali Ghaffari, Shahram Azadi Pages 4119-4135

    The coordinated control of autonomous electric vehicles with in-wheel motors is classified as over-actuated control problems requiring a precise control allocation strategy. This paper addresses the trajectory tracking problem of autonomous electric vehicles equipped with four independent in-wheel motors and active front steering. Unlike other available methods presenting optimization formulation to handle the redundancy, in this paper, the constraints have been applied directly using the kinematic relations of each wheel. Four separate sliding mode controllers are designed in such a way that they ensure the convergence of tracking errors, in addition to incorporating the parametric and modeling uncertainties. The lateral controller is also designed to determine the front steering angles to eliminate lateral tracking errors. To appraise the performance of the proposed control strategy, a co-simulation is carried out in MATLAB/Simulink and Carsim software. The results show that the proposed control strategy has enabled the vehicle to follow the reference path and has converged the errors of longitudinal and lateral positions, velocity, heading angle, and yaw rate. Furthermore, the proposed control system shows promising results in the presence of uncertainties including the mass and moment of inertia, friction coefficient, and the wind disturbances.

    Keywords: Active Front Steering, Autonomous Vehicles, In-wheel Electric Motors, Sliding Mode Control, Torque Distribution, Trajectory Ttracking
  • Abbas Soltani*, Milad Arianfard Pages 4136-4145

    In this study, an adaptive sliding mode controller (ASMC) based on estimation of tire-road friction coefficient is proposed for engagement control of automotive dry clutch. The control of clutch engagement is one of the most important parts of gear-shift process for automated manual transmission. Accurate amount of drive shaft torque in modelling of powertrain system is essential to guarantee smooth engagement of the clutch and rapid response of the control system. As the tire-road friction coefficient has significant influence on drive shaft torque, an estimator is designed to calculate this parameter. The ASMC is proposed for the clutch control to overcome the system uncertainties and a proportional integral (PI) controller is adopted to engine speed control. In addition, a nonlinear estimator utilizing unscented Kalman filter is applied to estimate the state variables that are measured hardly such as wheel slip and longitudinal vehicle velocity. The simulation results demonstrate the high effectiveness of the combined use of presented controller and road friction coefficient estimator for improving the smooth clutch engagement in comparison to the control system without estimator.

    Keywords: Clutch engagement control, Parameter estimation, Road friction coefficient, Adaptive sliding mode control, Unscented Kalman filter