به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
مقالات رزومه:

دکتر رضا توکلی مقدم

  • مسعود لطیفیان، رضا توکلی مقدم*، امیرحسین لطیفیان، مهدی کاشانی

    در زمینه ی مساله تشکیل سلول، مقالات و تحقیقات اندکی به خرابی یا قابلیت اطمینان ماشین ها پرداخته اند. عموما در مساله تشکیل سلول فرض براین است که اکثر ماشین ها 100 درصد قابل اطمینان هستند، با این وجود در مسائل واقعی چنین اتفاقی نمی افتد. خرابی ماشین ها می تواند به شدت بر عملکرد سیستم تاثیر بگذارد و باعث می شود کارها در تاریخ مقرر انجام نپذیرد. سیستم تولید سلولی، یکی از فلسفه های فناوری گروهی است که با تقسیم یک سیستم بزرگ به چندین زیرسیستم کوچک، کنترل و مدیریت سیستم تولید را تسهیل می کند. هدف از پژوهش حاضر، ارائه یک مدل برنامه ریزی ریاضی برای مساله برنامه ریزی تولید در واحدهای صنعتی با درنظر گرفتن قابلیت اطمینان است که شرایط استفاده از مسیر های جایگزین برای قطعات را ایجاد می نماید و منجربه کمینه سازی هزینه های ازدست رفته و همچنین هزینه های نگهداری و تعمیرات می شود. ازآنجائی که مساله پیشنهادی از نوع چندجمله ای غیرقطعی سخت است برای حل مدل پیشنهادی از الگوریتم ژنتیک استفاده می شود. مدل ریاضی ارائه شده با حداقل کردن هزینه های خرابی ماشین ها باعث کاهش هزینه های سیستم، نگهداری و تعمیرات، و حرکات بین و درون سلولی گردید.

    کلید واژگان: سیستم تولید سلولی, برنامه ریزی تولید, بهینه سازی ریاضی, قابلیت اطمینان, الگوریتم ژنتیک
    Masoud Latifian, Reza Tavakkoli-Moghaddam *, Amirhossein Latifian, Mahdi Kashani

    A few studies have addressed the failure or reliability of machines regarding cell formation problems. The general assumption in cell formation is that most machines are 100% reliable; however, they are not in a practical situation. Machine failure can severely affect the system performance and cause a delay in the scheduled date. A cellular manufacturing system is a philosophy among group technology ones, which is controlled by dividing a large system to multiple smaller sub-systems and facilitate manufacturing system management. This study presents a mathematical programming model for production planning problems in industrial units with reliability that prepares the conditions to utilize alternative routes for parts, which minimizes the lost costs along with maintenance costs. Since the considered problem is an NP-hard one, a genetic algorithm is used to solve the model. The presented mathematical model minimizes system costs, and the costs related to intra- and inter-cellular movements and maintenance by minimizing the costs of machine failures.

    Keywords: Cellular Manufacturing System, Production Planning, Mathematical Optimization, Reliability, Genetic Algorithm
  • عذرا قبادی، رضا توکلی مقدم*، محمد فلاح، حامد کاظمی پور
    یک رویکرد موثر برای رفع مسائل تغییرات آب و هوایی، جایگزین نمودن وسائط حمل ونقل الکتریکی با همتایان دیزلی خود است. هرچند این جایگزینی چالش های بسیار دارد، ولیکن غیرممکن نیست. در این مقاله، دو مدل ریاضی چندهدفه -چند انباره مسئله مسیریابی - مکان یابی ایستگاه های شارژ و تعویض باتری وسائط نقلیه الکتریکی باری ناهمگن ارائه شد بعلاوه برای افزایش رضایتمندی مشتریان، جریمه تخطی از پنجره های زمانی نیز در مدل ها اعمال گردید. هر یک از این دو مدل سه هدف را دنبال می کنند. هدف اول، کمینه نمودن (مجموع هزینه های مسیریابی، هزینه های احداث ایستگاه های شارژ یا تعویض باتری و هزینه تخطی از پنجره های زمانی)؛ هدف دوم، حداقل نمودن تعداد خودروهای مورد استفاده و هدف سوم، حداقل نمودن تعداد ایستگاه های شارژ یا تعویض باتری است . مدل ها توسط حل کننده سیپلکس با نرم افزار گمزدر اندازه کوچک حل شد. بررسی نتایج نشان می دهد در مدل پیشنهادی اول که ایستگاه های تعویض باتری مورد بهره برداری قرارگرفتند؛ تعداد خودروهای کمتری مورد استفاده قرارگرفت. همچنین در مدل پیشنهادی دوم که ایستگاه ها شارژ بخشی ارائه می دهند؛ هزینه کل کمترگردید. ضمنا در هردو مدل با افزایش تعداد انبارها هزینه کاهش می یابد.
    کلید واژگان: مسیر یابی - مکان یابی, وسائط نقلیه الکتریکی باری, مدل سازی چندهدفه, پنجره های زمانی نرم
    Azra Ghobadi, Reza Tavakkoli-Moghaddam *, Mohammad Fallah, Hamed Kazemipour
    An effective approach to tackling climate change is to replace electric vehicles with their diesel counterparts. Although this replacement has many challenges, it is not impossible. In this paper, two multi-objective mathematical models - multiple deposit problem routing - charging station location and battery replacement of heterogeneous freight electric vehicles were presented. In addition, to increase customers' satisfaction, fines for violating time windows were applied in the models. Each of these two models pursues three goals. The first goal is to minimize (the total cost of routing, the cost of constructing charging stations or replacing the battery, and the cost of breaking time windows); the second goal is to minimize the number of used cars and the third goal is to minimize the number of charging or battery replacement stations. The models were solved by CPLEX solver with GAMS software in small size. Examination of the results shows that in the first proposed model, battery replacement stations were used. Fewer cars were used. Also, in the second proposed model that the stations offer partial charging; the total cost was reduced. Also, in both models, the cost decreases with increasing the number of depots.
    Keywords: Location-Routing Problem, Freight Electric Vehicles, Multi-Objectives Model, Soft Time Windows
  • Abdolreza Hamdi-Asl, Hossein Amoozad-Khalili *, Reza Tavakkoli-Moghaddam, Mostafa Hajiaghaei-Keshteli

    Nowadays, the agricultural and food supply chains have attracted both academia and industrial practitioners. This paper first considers the characteristics of the date product as one of the most well-known and rich fruits to design and address its supply chain design. Special characteristics in date products have made the design of the supply chain to be unique. Therefore, considering different customers along with the specific product flow is another contribution of this paper. Reportedly, there is no work on this topic. Several old and recent meta-heuristic algorithms are utilized in multi-objective meta-heuristics to reach better intensification and diversification trade-offs. By the Taguchi design experiment method, appropriate parameter values of the proposed algorithms are chosen. Besides, the solution quality is investigated by approaches including the relative percentage deviation (RPD) and the CPU time and the weighted LP-metric method. The results showed that a multi-objective Keshtel algorithm (MOKA) is more efficient and consistently outperforms other utilized algorithms.

    Keywords: Supply Chain Design, Agricultural Supply Chain, Sustainability, Date, Logistics
  • امیرعباس شجاعی*، کیوان روشن، مهرداد جوادی، رضا توکلی مقدم، محمدرضا خلج

    در این تحقیق، براساس شرایط و محدودیت های انبار اتوماتیک شرکت ایران خودرو یک مدل برنامه ریزی ریاضی سه هدفه غیرخطی پیشنهاد شده که هدف این مدل، تخصیص بهینه پالت ها به مکان های انبارش ازپیش تعیین شده، با یک شاخص جدید می باشد. ازآنجا که تقاضای پالت های انبار به دلیل نوسان تقاضای مشتریان از عدم قطعیت بالایی برخوردار می باشد، به استوار نمودن مدل ریاضی به روش P-Robustness جهت مقابله با تاثیر تغییر تقاضا بر حل بهینه پرداخته شده است و پس از آن مساله به یک مدل ریاضی تک هدفه تبدیل می شود که برای حل آن در ابعاد بزرگ از دو الگوریتم فراابتکاری ژنتیک و شبیه سازی تبرید استفاده شده است. جهت بررسی عملکرد دو الگوریتم از آزمون تی در نرم افزار مینی تب به منظور مقایسه میانگین مقادیر تابع هدف از 15 بار حل مسائل عددی در ابعاد مختلف بهره گرفته شده است. معرفی یک شاخص جدید برای تخصیص بهتر پالت ها به محل های ذخیره سازی در انبار اتوماتیک ایران خودرو موجب کاهش مسافت، زمان، انرژی و هزینه های ذخیره و بازیابی و جابجایی شده که با توجه به حجم بالای گردش قطعات در انبار، می توان نتیجه گرفت که صرفه جویی قابل توجهی حاصل شده است.

    کلید واژگان: ذخیره و بازیابی اتوماتیک, تخصیص مکان انبارش, شاخص فضای مورد استفاده (مترمکعب), عدم قطعیت, بهینه سازی استوار
    Amirabbas Shojaie *, Keyvan Roshan, Mehrdad Javadi, Reza Tavakkoli-Moghaddam, Mohammadreza Khalaj

    In this research, based on the conditions and limitations of Iran Khodro's automatic warehouse, a non-linear three-objective mathematical programming model is proposed. Since the demand for warehouse pallets has high uncertainty due to the fluctuation of customer demand, the mathematical model has been based on the P-Robustness method to deal with the effect of changing demand on the optimal solution, and then the problem is converted to a single-objective mathematical model. It turns out that two meta-heuristic algorithms e.g., genetic algorithm and simulated annealing algorithm have been used to solve it in large scales. To check the performance of the two algorithms, the T-test in Minitab software was used to compare the average values of the objective function from 15 times solving numerical problems in different dimensions. Introducing a new index for better allocation of pallets to storage locations in Iran Khodro's automatic warehouse has reduced the distance, time, energy, and costs of storage retrieval and handling, which due to the high turnover of parts in the warehouse, can be concluded that significant savings have been achieved

    Keywords: Automated Storage, Retrieval System (AS, RS), Class-Based Storage, Storage Location Assignment Policy, Cube Per Order Index (COI), Uncertainty, Robust Optimization
  • رضا توکلی مقدم*، مریم عبدی
    آمارها نشان از افزایش قابل توجه تعداد بلایای طبیعی دارد. تاثیرات اقتصادی، اجتماعی و زیست محیطی این دسته از حوادث، توجه محققان را نسبت به تصمیمات این حوزه به خود جلب کرده است. با توجه به حادثه خیز بودن ایران و بروز حوادث طبیعی نظیر سیل، زلزله و طوفان و همچنین وجود سابقه جنگ، مدیریت بحران به یکی از کلیدی ترین موضوعات مدیریتی حال حاضر کشور تبدیل شده است بنابراین نیاز به برنامه ریزی لجستیک بشر دوستانه با در نظر گرفتن شرایط واقعی ضروری بنظر می رسد. مهم ترین ویژگی های یک امداد رسانی خوب کاهش زمان ارسال محموله های کمکی و کاهش هزینه های کلی به جهت استفاده هر چه بهتر از منابع مالی موجود می باشد. اما با توجه به شرایط محیط زیستی حال حاضر در جهان و با توجه به رویکرد بهبود مستمر، دیدگاه های محیط زیستی در مسائل لجستیک مورد توجه محققان قرار گرفته است. در این پژوهش، ابتدا یک مدل خطی عدد صحیح مختلط دو هدفه ارائه شده است که تابع هدف اول به کاهش هزینه انتقال کالاهای امدادی و نیز کاهش میزان انتشار گازهای گلخانه ای و تابع هدف دوم به کاهش زمان امدادرسانی می پردازد. عدم قطعیت موجود در مدل نیز از طریق روش آنتروپی حداکثر (ME) در نظر گرفته شده است. در نهایت این مدل با استفاده از روش حل دقیق گمز و نیز الگوریتم ژنتیک چند هدفه (NSGA-II) و الگوریتم بهینه سازی ازدحام ذرات چند هدفه (MOPSO) حل شده است، تحلیل حساسیت بر روی یکی از پارامترهای اصلی مدل انجام گرفته و نیز روش های حل با کمک چندین معیار با هم مقایسه شده اند و با توجه به معیارها، در انتها الگوریتم ژنتیک چندهدفه در اندازه های کوچک و بزرگ بهترین جواب را اتخاذ نمود.
    کلید واژگان: لجستیک بشر دوستانه, حمل و نقل سبز, مدیریت بحران, روش آنتروپی حداکثر, الگوریتم های فراابتکاری
    Reza Tavakkoli-Moghaddam *, Maryam Abdi
    The statistics show a significant increase in a number of natural disasters. The economic, social, and environmental impacts of these events have attracted the attention of researchers to the decisions of this field. According to our geographical situation and a number of natural disaster (e.g., earthquake, storm and flood and historical wars), crisis management is one of most important topics among researchers. It is worth noting that the complexity and unpredictability are an integral activity of planning and operations during the crisis response phase. Therefore, the need for humanitarian logistics planning seems necessary in real life situations. The most important properties of well relief are to minimize the distribution time and minimize the budget because of increasing the efficiency; however, most recent studies are shown that greenhouse issues can be involved in crisis management. Therefore, this paper study presents a linear two-objective integer model. The first objective function is to minimize the cost of relief supplies and greenhouse gas emissions in a distribution system. Additionally, the second objective function minimizes the relief time. Demand of nodes are uncertain, in which uncertainty in the model is also considered and handled by the ME method. Furthermore, this model is solved using the GAMS software and two well-known multi-objective meta-heuristic algorithms, namely NSGA-II and MOPSO. The sensitivity analysis is performed on one of the main parameters of the model and compared the methods of solving with the help of several metrics. Finally, the best solutions are reported by the NSGA-II in solving small and large-sized problems.
    Keywords: Humanitarian Logistics, Green Transportation, Crisis Management, Maximum Entropy Method, Meta-Heuristic Algorithms
  • M. Najafi, A. Ghodratnama, S. H. R. Pasandideh, R. Tavakkoli-Moghaddam *
    The economic production quantity (EPQ) model considers the production rate, demand rate, setup costs, holding costs, and shortage costs to find the production quantity that minimizes the sum of these costs. The goal is to balance the costs associated with production, holding inventory, and potential shortages. In this paper, two objectives include the costs of production and ordering and others in a separate objective function. In the objectives of the other costs, The cost of storage space as a supply is defined to be minimized. This study considers scrap and reworks in the EPQ model. This inventory model accounts for many items on a single machine. The production capacity is reduced, and there are shortages when only one machine exists. By determining the quantities of the products produced by the manufacturing facility, the storage space for each product, cycle time, and product scarcity, we can reduce both the overall cost and the supply cost of warehouse space due to non-linearity and the inability to solve commercial software in large dimensions, a multi-objective meta-heuristic algorithm, namely the non-dominated sorting genetic algorithm (NSGA-II), is used. The findings are further validated using the non-dominated ranking genetic algorithm (NRGA). Also, the obtained Pareto front is studied with several indicators. To perform these two algorithms at the best condition, we employed the Taguchi approach and related orthogonal arrays and performed algorithms for each array considering several factors. Also, to validate the mathematical model, we used the augmented epsilon-constraint method executed in the GAMS environment. It is clear that GAMS commercial software yields better results; however, these two algorithms are justifiable when the problem becomes bigger. Finally, by performing a sensitivity analysis for these indicators and the objective functions, the behavior of the proposed algorithms is compared and examined in detail. Also, the superior algorithm is chosen using the TOPSIS as a multi-criteria decision-making method. Numerical examples show how the presented model and the proposed algorithms may be used efficiently. A surveying literature review clarifies that the related objective functions, constraints, and solution approaches have not been investigated until now.
    Keywords: Bi-objective mathematical model, Economic Production Quantity, Rework, shortage, Meta-heuristics, Uncertainty
  • G. R. Einy-Sarkalleh, R. Tavakkoli-Moghaddam *, A. Hafezalkotob, S. E. Najafi
    Contracts have been used for coordination in many supply chain alliances among businesses. Because bilateral contracts are significantly more successful and profitable than uni-contracts, In this article, the issues of implementing bilateral contracts are investigated with the approach of game theory and government intervention to increase bilateral interaction between members of co-production and co-distribution in the supply chain. By adopting the game theory model between these two members of the chain and intervention government, this research seeks to increase production and distribution by making maximum use of the excess capacity of production and distribution in the chain. In this way, the producer uses his surplus capacity in two ways: one is produced directly by the producer and enters the market by the distributor, and the other is an order that the distributor gives to the producer, which is different from the product that the producer produces. It is produced directly and given by the distributor. The purpose of this research is to investigate and analyze the amounts and profits resulting from the participation of production and distribution with government intervention in the supply chain. According to this research, governments should provide an environment for supply chain members to have more cooperation with each other because, in the case of cooperation among supply chain members, the profits of the chain and the members will increase.
    Keywords: Supply chain management, Bilateral contract, alliance, Coordination, game theory
  • ملیحه فلاح تفتی، محبوبه هنرور*، رضا توکلی مقدم، احمد صادقیه
    این مطالعه به توسعه ی یک مدل مکان یابی-مسیریابی هاب دو هدفه ی تصادفی برای مساله ی طراحی شبکه ی ریلی تندرو می پردازد. به دلیل استفاده از سیستم های ریلی تندرو در هر دوی زیرشبکه های سطح هاب (شبکه ی میان گره های هاب) و سطح غیرهاب (اسپک یا شبکه ای که گره های غیرهاب را به یکدیگر و به گره های هاب متصل می کند)، تصمیم گیری درخصوص مکان یابی گره های هاب، گره های غیرهاب، یال های هاب و یال های غیرهاب، تخصیص گره های غیرهاب به گره های هاب و تعیین خطوط حرکت هاب، خطوط حرکت غیرهاب، درصد تقاضاهای خدمت دهی شده و نحوه ی مسیریابی جریان از طریق خطوط شبکه به طور همزمان صورت می گیرد. عدم قطعیت برای تقاضاها درنظر گرفته شده که با مجموعه ی محدودی از سناریوها نشان داده می شوند. مساله با روش مدل سازی تصادفی دومرحله ای فرموله شده است. اهداف مساله بیشینه سازی امیدریاضی سود خالص کل و کمینه سازی امید ریاضی زمان خدمت کل می باشد. عملکرد مدل پیشنهادی از طریق آزمایشات محاسباتی با استفاده از مجموعه داده ی شناخته شده ی پست استرالیا ارزیابی گردید. نتایج محاسباتی اهمیت درنظر گرفتن مدل تصادفی و اهداف متضاد سود و زمان را برای مساله تایید نمودند. برخی بینش های مدیریتی نیز از طریق تجزیه وتحلیل شبکه های حاصل تحت تنظیمات مختلف پارامترها و بررسی چگونگی تاثیر این تنظیمات بر ویژگی های جواب های حاصل و تعاملات بین جنبه های مختلف مساله ی تصمیم گیری پیچیده ی مورد مطالعه، ارائه گردید
    کلید واژگان: مکان یابی هاب, طراحی شبکه های ریلی تندرو, شبکه ی هاب و غیرهاب, بهینه سازی دوهدفه و تصادفی
    Malyhe Fallah-Tafti, Mahbobeh Honarvar *, Reza Tavakkoli-Moghaddam, Ahmad Sadegheih
    This study focuses on the development of a stochastic bi-objective hub location-routing model for a railway rapid transit network design problem. Due to the use of railway rapid transit systems in the hub-level sub-network (i.e., the network among the hub nodes) and the spoke-level sub-network (i.e., the network that connect spoke nodes to each other and to hub nodes), the decisions to make concern the location of hub nodes, spoke nodes, hub edges and spoke edges, and the determination of hub and spoke lines, the percentage of satisfied demands, and the way of routing the demands, simultaneously. Uncertainty is assumed for demands represented by a finite set of scenarios. The problem is formulated through a two-stage stochastic modeling framework. The aim is to maximize the total expected profit and to minimize the total expected service time. The performance of the model is evaluated through computational tests using the well-known AP dataset. The computational results confirm the importance of considering the stochastic model and the conflicting profit and time objectives for the given problem. Some managerial insights are also provided through the analysis of the resulting networks under various parameter settings and the investigation of the effect of these settings on the characteristics of the obtained solutions and the interactions among the different aspects of the studied complex decision problem
    Keywords: Hub Location, Railway Rapid Transit Network Design, Hub, Spoke Network, Bi-Objective, Stochastic Optimization
  • باب اله نعمتی، رضا توکلی مقدم*

    هدف این پژوهش ارایه الگوی پرورش مدیران راهبردی کشور براساس رویکرد نظریه داده بنیاد در وزارت امور اقتصاد و دارایی می باشد. روش پژوهش با توجه به هدف آن، کاربردی و از حیث شیوه اجرا، کیفی، از نوع تحلیل مضمون و از نظر ماهیت، از نوع تحقیق های اکتشافی می باشد. جامعه آماری پژوهش شامل 12 نفر از اساتید دانشگاه در زمینه مدیریت و مدیران ارشد وزارت امور اقتصاد و دارایی می باشد و نمونه گیری به صورت هدفمند و گلوله برفی انجام شد و مصاحبه ها تا دستیابی به اشباع نظری ادامه داشت. برای تحلیل داده‎ها از تیوری داده بنیاد (گراندد تیوری) و از نرم افزار 2020 MAXQDA برای کدگذاری مصاحبه ها استفاده گردید. نتایج حاکی از آن بوده که در مجموع 8 مقوله و 50 شاخص شناسایی و استخراج شدند و در نتایج حاصل از سطح بندی الگوی نهایی مدل پرورش مدیران راهبردی کشور پیامدها موثرترین عامل در الگوی نهایی پرورش مدیران راهبردی کشور به روش داده بنیاد می‎باشند و بعد از آن پدیده محوری و راهبردها در اولویت بعدی قرار دارند. شرایط زمینه ای و شرایط مداخله گر در سطح سوم تاثیر بر الگوی نهایی پرورش مدیران راهبردی کشور به روش داده بنیاد قرار گرفته اند و شرایط علی کمترین تاثیر را بر الگوی نهایی پرورش مدیران راهبردی کشور دارد.

    کلید واژگان: منابع انسانی, مدیران راهبردی, وزارت امور اقتصاد و دارایی, نظریه داده بنیاد
    Baballh Nemati, Reza Tavakkoli-Moghaddam *

    The purpose of this research is to present the model of training strategic managers of the country based on the data-based theory approach in the Ministry of Economy and Finance. According to its purpose, the research method is applicable, and qualitative in terms of implementation; content analysis type, and, exploratory in terms of nature. The statistical population of the research includes 12 university professors in the field of management and senior managers of the Ministry of Economy and Finance, and the sampling was done in a purposeful and snowball manner, and the interviews continued until the theoretical saturation. Grounded theory was used for data analysis, and MAXQDA 2020 software was used for coding the interviews. The results indicated that a total of 8 categories and 50 indicators were identified and extracted, and in the results of the leveling of the final model of the country's strategic managers training model, the consequences are the most effective factors in the country's strategic managers training model using the data-based method and, phenomenon-based and strategies are in the next priority. Contextual conditions and intervening conditions are placed in the third level of influence on the final model of training strategic managers of the country according to the data-based method, and causal conditions have the least impact on the final model of training strategic managers of the country.

    Keywords: human resources, Strategic managers, Ministry of Economy, Finance, Data-based theory
  • S. Jafarian-Namin, M.S. Fallah Nezhad *, R. Tavakkoli-Moghaddam, A. Salmasnia, M. H. Abooie
    Statistical process monitoring, maintenance policy, and production have commonly been studied separately in the literature, whereas their integration can lead to more favorable conditions for the entire production system. Among all studies on integrated models, the underlying process is assumed to generate independent data. However, there are practical examples in which this assumption is violated because of the extraction of correlation patterns. Autocorrelation causes numerous false alarms when the process is in the in-control state or makes the traditional control charts react slowly to the detection of an out-of-control state. The auto-regressive moving average (ARMA) control chart is selected as an effective tool for monitoring autocorrelated data. Therefore, an integrated model subject to some constraints is proposed to determine the optimal decision variables of the ARMA control chart, economic production quantity, and maintenance policy in the presence of autocorrelated data. Due to the complexity of the model, a particle swarm optimization (PSO) algorithm is applied to search for optimal decision variables. An industrial example and some comparisons are provided for more investigations. Moreover, sensitivity analysis is carried out to study the effects of model parameters on the solution of the economic-statistical design.
    Keywords: economic-statistical design, Economic production quantity, maintenance policy, ARMA control chart, pso algorithm
  • A. Sarafrazi, R. Tavakkoli-Moghaddam *, Mahdi Bashiri, Gh. Esmaeilian
    Industrial clusters are one of the most current development models. Aggregation of firms in a geographical area has many advantages, such as cost reduction, better supply, and knowledge emission with linkage together. The linkage result will be created the networks. The industrial clusters without co-operation networking will not be developed. That must be noticed to severe changes of business environment parameters. Therefore, this paper develops an uncertain mathematical model under sustainable and dynamic conditions. The model contains four objectives, namely profit, transportation cost, employment, and environment appraisal of the cluster. The outcome of this research is to find the best/optimal solution for firms’ arrangements with/within networks that maximize the profit, employment, and environment score and so minimize the transportation cost. The assignment patterns show horizontal and vertical cooperation with/within networks. The efficiency of model clustering in sub-clusters is followed by the neighbor clustering efficiency and the one’s clustering efficiency methods.
    Keywords: Industrial clusters, Multi-objective model, Co-operation network, uncertainty, Sustainability
  • Mahya Talebzadeh, Ali Ghodratnama *, Reza Tavakkoli-Moghaddam
    When the reverse supply chain—which comprises the steps involved in bringing a product back into the supply chain, such as its collection, recycling, and destruction—is taken into account alongside the forward supply chain, it becomes evident how important this issue has become in recent years and how social and environmental factors have been taken into account to meet economic demands. This paper presents a five-level closed-loop green supply chain network, considering cost minimization, environmental effects, and time delays in sending products and raw materials. The model is presented under uncertainty of some parameters, considering the particular position of purchased raw materials. The tri-objective fuzzy model is converted into a crisp model using the Jiménez et al. (2007) method. The performance and efficiency of the model are analyzed using the Torabi-Hassini method and the augmented epsilon constraint method. GAMS software provides a numerical illustration of this process. Sensitivity analysis is used to the various degrees of confidence. The augmented epsilon-constrained method outperforms the Torabi-Hassini (TH) method for the first and second objective functions and vice versa for the third objective function. The computational time of the augmented epsilon-constrained method is also less than that of the TH method for all confidence levels.
    Keywords: Closed Loop Green Supply Chain, Fuzzy Modelling, Uncertainty, Epsilon Constrained Method
  • Alireza Goli *, Iman Shahsavani, Fereshte Fazli, AmirMohammad Golmohammadi, Reza Tavakkoli-Moghaddam

    The circular economy is one of the most important issues in the optimal use of resources all around the world. The combination of circular economy and supply chain creates a new concept called circular supply chain, which seeks to increase the efficiency of the supply chain by making the best use of resources. In this research, the main purpose is to apply a hybrid Multi-Criteria Decision-Making (MCDM) method to evaluate the effective factors in implementing the circular supply chain. First, the effective factors in the field of the circular supply chain are identified, and in the next step, the weight of the factors is obtained by implementing the Analytic Hierarchy Process (AHP) method. Next, the intensity of the effect of each factor is calculated. Moreover, the correlation between the factors affecting the circular supply chain and the effectiveness of the factors is analyzed using the Decision Making Trial and Evaluation Laboratory (DEMATEL) method. Finally, using the Simple Additive Weighting (SAW) method, the most important factors in the implementation of the circular supply chain are identified. The core results of this research show that the quality of final products is the most important factor in implementing a circular supply chain. Moreover, applying the circular economy approach leads to the zero-waste goal, which can increase the efficiency of supply chains.

    Keywords: circular economy, Supply Chain Management, Circular supply chain, Multi-criteria decision-making, DEMATEL method
  • الهام معظم جزی، رضا توکلی مقدم*، هادی عبدالله زاده سنگرودی

    تعمیرات فرصت طلبانه یک راه حل کلیدی برای کاهش هزینه های نگهداری و تعمیرات)نت(و/یا بهبود عملکرد سیستم است. با این وجود، سیاست های نت فرصت طلبانه تنها برای رده ی خاصی از سیستم ها توسعه یافته اند که انتظار می رود به صورت یکپارچه عمل کنند. هدف این پژوهش توسعه ی رویکردهای نت فرصت طلبانه پویای موجود برای سیستم های تولیدی منعطف است که به صورت منقطع عمل می کنند. یک مدل برنامه ریزی غیرخطی مختلط به منظور تصمیم گیری هم زمان در رابطه با گروه بندی فعالیت های تعمیراتی و همچنین تعیین اندازه دسته های تولیدی و زمان بندی آنها توسعه داده شده است. مدل پیشنهادی قادر به در نظر گرفتن 1. تعداد محدود تیم های تعمیراتی؛ 2. موجودی اولیه؛ 3. عملیات مونتاژ و 4. تقسیم اندازه کارهاست. تابع هدف شامل هزینه های فعالیت های تعمیرات پیشگیرانه و اصلاحی و همچنین هزینه های مختلف تولید متشکل از هزینه های تولید و آماده سازی، تاخیر سفارش ها و جریمه ی ذخیره ی اطمینان است. اعتبار و کارایی مدل پیشنهادی از طریق پیاده سازی در یک مثال عددی مورد تحلیل قرار گرفت.

    کلید واژگان: نگهداری و تعمیرات فرصت طلبانه, گروه بندی پویا, زمان بندی تولید, تقسیم اندازه ی کارها, برنامه ریزی ریاضی
    E. Moazam Jazi, R. Tavakkoli-Moghaddam *, H. Abdollahzadeh Sangroudi

    The aim of this paper is to present a method to optimize maintenance planning for a exible manufacturing system. Such a system can be considered as a multicomponent system. Two types of methods may be used in the maintenance optimization of multi-component systems, i.e., static or dynamic methods. Static methods provide a xed maintenance planning, whereas dynamic methods rede ne the groups of maintenance operations at each decision time. Dynamic or opportunistic maintenance can incorporate up to date information such as 1) machines condition, 2) the number of maintenance teams, and 3) production-related constraints in rede ning the groups of maintenance operations. As the literature review shows, the existing dynamic or opportunistic maintenance models are mainly developed to specify classes of multi-component systems that are expected to operate continuously without considering the production-related constraints and performance indicators. The objective of this paper is to develop the existing dynamic opportunistic maintenance approaches for exible production systems that operate intermittently. To this end, a mixed-integer nonlinear mathematical model is developed to simultaneously decide on the maintenance grouping as well as lot sizing and production schedule. Moreover, the proposed model considers further underlying assumptions such as 1) the limited number of maintenance teams, 2) initial inventory, 3) assembly operations, 4) lot sizing, 5) sequence-dependent setup times, 6) safety stock levels, and 7) lots with unequal and variable sizes. The objective includes the costs of preventive and corrective repair activities as well as various production costs consisting of production and setup costs, tardiness penalty costs, and safety stock penalty costs. Due to the nonlinear nature of the failure rate of the production machines, techniques for solving linear mathematical models cannot be used. From this, a linear approximation of the model is presented. The validity and eciency of the proposed model were analyzed by implementation in a numerical experiment.

    Keywords: Opportunistic maintenance, dynamicgrouping, production scheduling, lot sizing, mathematicalprogramming
  • سمراد جعفریان نمین، محمدصابر فلاح نژاد*، رضا توکلی مقدم، علی سلماس نیا

    اگر فرایند به قابلیت بالایی رسیده باشد می توان با در نظر گرفتن سطح انتظارات، تا حدودی تغییرات در میانگین را مجاز دانست. برای چنین وضعیتی نمودار کنترل پذیرش (A C C) ایجاد شده است که از مهم ترین مفروضات آن می توان به نرمال بودن و استقلال داده های مورد پایش اشاره کرد. با این وجود، تحت شرایطی در عمل، الگوهای همبستگی خاصی از میان اطلاعات نمونه یی قابل استخراج است که نقض فرض استقلال را در پی دارد. هدف اصلی این پژوهش معطوف به توسعه ی نمودار کنترل پذیرش در شرایطی است که داده های پرکاربردترین فرایند خودهمبسته، یعنی فرایند خودبرگشتی مرتبه ی اول A R(1)، مورد پایش قرار می گیرد. پس از ارزیابی عملکرد روش های پایش با استفاده از معیار متوسط طول دنباله(A R L)، مشخص می شود که نمودار پیشنهادی E W M A نتایج بهتری دارد. علاوه بر این، طراحی اقتصادی آماری نمودار مذکور با هزینه ی کم تری میسر می شود.

    کلید واژگان: نمودار کنترل پذیرش, فرایند خودبرگشتی, متوسط طول دنباله, طراحی اقتصادی آماری
    S. Jafarian-Namin, M.S. Fallahnezhad *, R. Tavakkoli-Moghaddam, A. Salmasnia

    The idea that any deviation should be recognized as soon as possible will often be impractical. Despite the existence of numerous assignable causes in the process, their e ects may be so small and minor against the permissible tolerance. Identifying them seems uneconomical from practical sights. If the process reaches a high level of capability, the production may be acceptable even though assignable causes befall. Since customer expectation will not be a ected in this case, it is not economical to stop the process. By considering the level of speci- cations, some changes in the average can be allowed. Dividing the conditions of the monitored process into just black and white can be simplistic. In such cases, traditional control charts with two zones are not applicable. By de ning the zone of indi erence, permissible deviations can be tolerated. For such a situation, Acceptance Control Chart (ACC) is developed based on three zones. Suppose that a statistically assignable cause is detected using the traditional control charts; however, no signal is observed by the ACC. Thus, this change does not result in a nonconforming output, and there is no need to stop production since no operational loss occurs. The most important assumptions of the ACC are the normality and independence of the monitored data. In some industrial/non-industrial processes (e.g., continuous production processes, nancial processes, network monitoring, and environmental phenomena), serial correlation can be extracted among samples which violates the assumption of independence. Autocorrelation reduces the performance of traditional control charts by producing frequent false signals in the in-control state or makes them respond slowly to the detection of the outof- control state. The main purpose of this study is to develop an ACC for monitoring the data of the most widely used autocorrelated process, namely the rst-order autoregressive process AR(1). In this regard, two types of ACC are extended for the residuals of AR(1) processes. Upon evaluating the performance of monitoring methods using the average run length (ARL), it is found that the proposed EWMA chart has better results. Moreover, the economic-statistical design of the proposed chart is carried out at a lower cost.

    Keywords: Acceptance control chart, autoregressiveprocess, average run length, economic-statistical design
  • محمدساویز اسدی لاری*، مریم عباس قربانی، رضا توکلی مقدم
    برنامه ریزی صحیح و مطلوب سیستم آموزشی امری ضروری است که دستاورد های فعلی و آینده ی هر کشوری را تضمین می کند. در سال های اخیر به سبب پاندمی بیماری کرونا بسیاری از سازمان ها و موسسات علمی تصمیم گرفتند که دوره های آموزشی، پژوهشی و غیره را برای فراگیران به صورت دوره های الکترونیکی برگزار کنند. سپس با گذشت زمان و واکسینه شدن جمعیت قابل قبولی از جوامع تصمیم سازمان ها و موسسات مذکور بر آن شد که دوره ها به صورت تلفیقی از دوره های الکترونیکی و دوره های حضوری اجرا گردند. در مقاله ی حاضر با توجه به مسیله ی ذکر شده، مدل سازی ریاضی مبتنی بر چگونگی برنامه ریزی سیستم آموزشی با هدف کمینه سازی هزینه یابی چندهدفه مرتبط با این سیستم صورت گرفت. در بخش هایی از مدل سازی که مرتبط با دوره های حضوری است، عناصری چون هزینه های تامین امکانات، تجهیزات، فضای برگزاری دوره ها با توجه به رعایت نکات مرتبط با بیماری کووید -19 مد نظر قرار گرفته است. به جهت پیچیدگی ساختار مسیله مدل شده، مسیله حاضر جز مدل های NP-hard محسوب می گردد؛ لذا جهت حل آن در ابعاد کوچک از نرم افزار گمز و برای دستیابی به مجموعه جواب پارتو در ابعاد متوسط و بزرگ از الگوریتم فراابتکاری ژنتیک و دسته ی میگوها بهره گرفته شده است. در نهایت نتایج مستخرج از حل مدل سازی ریاضی با استراتژی های منتخب، دستیابی به جواب های بهینه در زمان کمتر و سریع تر با به کارگیری الگوریتم های فراابتکاری نسبت به روش دقیق و کارایی مطلوب الگوریتم های مذکور را نشان داده است.
    کلید واژگان: دوره ی آموزشی مجازی, یادگیری الکترونیکی, الگوریتم ژنتیک, الگوریتم دسته های میگو, پاندمی کرونا
    Mohammad-Saviz Asadi-Lari *, Maryam Abbas-Ghorbani, Reza Tavakkoli-Mogahddam
    The correct and optimal planning of the educational system is essential to guarantee the current and future achievements of any country. In recent years, due to the coronavirus pandemic, many organizations and scientific institutions have decided to hold educational, research, and courses for learners in the form of electronic (online) courses. Then, by passing the time and the vaccination of an acceptable population of the communities, the aforementioned organizations and institutions have decided that the courses should be conducted as a combination of electronic and in-person courses. In this article, according to the mentioned problem, a mathematical model is built based on how to plan the educational system with the aim of minimizing the multi-objective costing related to this system. Educational institutions and the Internethave been noted. In the parts of the modeling that are related to in-person courses, elements (e.g., the costs of providing facilities, equipment, and the space for holding courses) have been taken into consideration with regard to the points related to the Covid-19 disease. Due to the complexity of the problem, it is considered one of the NP-hard ones. Therefore, to solve small-sized problems, GAMS software was used. To obtain the set of Pareto solutions in medium- and large-sized problems, two meta-heuristic algorithms, namely genetic algorithm and Krill herd optimization, are used. Finally, the results with selected strategies have shown the achievement of optimal solutions in less and faster time by using meta-heuristic algorithms than the exact method and the optimal efficiency of the aforementioned algorithms.
  • S. Ebrahimnejad *, M. Villeneuve, R. Tavakkoli-Moghaddam
    The increasing severity and frequency of disasters have posed major challenges for people. Amongst, the risks of fatalities and injuries of people with disabilities (PWDs) have significantly increased. The Sendai Framework for Disaster Risk Reduction (SFDRR) initiated a movement to create a "disability-accessible and inclusive environment" which highlighted the problems PWDs faced during disasters. One of the most important issues is providing evacuation and accommodation according to the special needs of PWDs. In this study, a MILP model is proposed to pick up PWDs from different locations and transfer them to shelters. Throughout this research, diverse disabilities, heterogonous vehicles, compatibility types of disabilities and vehicles, multi-depot and adept and amateur operators were considered to help evacuate PWDs. Additionally, 27 problems are solved to examine the efficacy of (μ+1) EA algorithm in large scale problems. Subsequently, a real case study with 500 nodes including pick up, shelters, and depot nodes are analyzed. The computational results illustrate that by adding small-sized (car) and medium-sized (Van) vehicles to the current fleet, the time for tours traveled significantly reduces. Finally, a sensitivity analysis has been conducted to prepare some managerial implications for crisis managers during the occurrence of disasters to help PWDs during evacuation.
    Keywords: People with disabilities, Disasters, Evacuation model, Shelters, Transportation, (μ+1) EA algorithm
  • Farzaneh Salami, Ali Bozorgi-Amiri *, Reza Tavakkoli-Moghaddam
    Feature selection is the process of picking the most effective feature among a considerable number of features in the dataset. However, choosing the best subset that gives a higher performance in classification is challenging. This study constructed and validated multiple metaheuristic algorithms to optimize Machine Learning (ML) models in diagnosing Alzheimer’s. This study aims to classify Cognitively Normal (CN), Mild Cognitive Impairment (MCI), and Alzheimer’s by selecting the best features. The features include Freesurfer features extracted from Magnetic Resonance Imaging (MRI) images and clinical data. We have used well-known ML algorithms for classifying, and after that, we used multiple metaheuristic methods for feature selection and optimizing the objective function of the classification. We considered the objective function a macro-average F1 score because of the imbalanced data. Our procedure not only reduces the irreverent features but also increases the classification performance. Results showed that metaheuristic algorithms could improve the performance of ML methods in diagnosing Alzheimer’s by 20%. We found that classification performance can be significantly enhanced by using appropriate metaheuristic algorithms. Metaheuristic algorithms can help find the best features for medical classification problems, especially Alzheimer’s.
    Keywords: Metaheuristic Algorithm, Alzheimer’s disease, MRI, Machine Learning, Feature selection, Data mining
  • محمدهادی حقیقت نژاد، رضا توکلی مقدم، حسین عموزادخلیلی*

    برای مدیریت بهینه فشار و کاهش هرچه بیشتر آب بدون درآمد با درنظر گرفتن هزینه های هر فعالیت، لازم است تا اولویت هر کدام از راه کارها با روش های علمی و با توجه به هزینه‎‎ها، کارایی و مدت زمان اجرا بررسی شوند. بنابراین، به‎منظور جلوگیری از اتلاف هزینه و استفاده بهینه از منابع مالی، ضروری است تا با بهره‎گیری از یک رویکرد جامع و نظام‎مند، راهبردهای مختلفی که به منظور مدیریت فشار آب شهری قابل استفاده هستند، شناسایی شده و مزایا و معایب آن‎ها مقایسه شود. در جامعه آماری این تحقیق، از دانش و تجربیات 35 خبره در صنعت آب و فاضلاب کمک گرفته شد. هم چنین به‎منظور اولویت بندی عملیات‎های پیشنهادی با هدف کاهش آب بدون درآمد مبتنی بر 3 معیار میزان تاثیر اجرای طرح، مدت زمان اجرای طرح و میزان هزینه اجرای طرح، از روش تلفیقی تاپسیس - ویکور استفاده شد. یافته‎های تحقیق بیانگر آن است که به ترتیب در اولویت اول، نصب فشارسنج های دیتالاگر برخط، اولویت دوم، به‎روز رسانی مستمر نقشه های آب و تهیه نقشهGIS  شبکه و در اولویت سوم، تکمیل لایه های اطلاعاتی آن شامل عمر لوله، جنس و قطر و غیره قرارگرفتند.

    کلید واژگان: مدیریت فشار, آب بدون درآمد, روش های تصمیم‎گیری چند معیاره
    MohammadHadi Haghighatnejad, Reza Tavakoli Moghaddam, Hossein Amoozadkhalili *

    In order to optimally manage the pressure and reduce the non-revenue water as much as possible, taking into account the costs of each activity, it is necessary to examine the priority of each solution by scientific methods and considering the costs, efficiency and duration of implementation. Therefore, in order to avoid cost wastage and efficient use of financial resources, it is necessary to use a comprehensive and systematic approach to identify different strategies that can be used to manage urban water pressure, the benefits and Compare their disadvantages. In the statistical population of this research, the knowledge and experience of 35 experts in the water and wastewater industry were used. Also in order to prioritize the proposed operations with the aim of reducing non-revenue water based on three criteria: the impact of the project, the duration of the project and the cost of the project, the integrated TOPSIS-VIKOR method has been used. Findings indicate that in the first priority, the installation of online data loggers pressure gauges, the second priority is the continuous updating of water maps and GIS network mapping, and in the third priority the completion of its information layers including pipe life, material and diameter, were located.

    Keywords: Pressure Management, Non-revenue Water, Multi-Criteria Decision Making Methods
  • محمد ساویز اسدی لاری*، مریم عباس قربانی، رضا توکلی مقدم
    هدف

    طی دهه های پیشین، صنعت هتل داری در سطح بین المللی به صنعتی رقابتی مبدل شده است که کشورها جهت کسب حداکثر درآمد حاصل از آن، متمایل به به کارگیری مدل های توسعه داده شده، تکنیک های جدید و ارایه نوآوری ها شده اند. به همین سبب  توجه به چگونگی مدیریت درآمد هتل ها و از سویی دیگر مدیریت هزینه های سفر و حمل ونقل مسافر و به کارگیری مدل سازی های سازگار با این حوزه جهت بهینه سازی در دستیابی به اهداف ضرورت دارد.

    روش شناسی پژوهش: 

    در این پژوهش، طرح مسایل در خصوص بهینه سازی مدیریت درآمد هتل ها، مدیریت هزینه مسافران و واکاوی چگونگی توسیع حمل ونقل استفاده شده توسط آن ها صورت گرفته است. پیش بینی چگونگی حمل ونقل مسافر و انتخاب نوع آن باتوجه به حالت های مختلف سفر چون هوایی، ریلی، آبی و جاده ای مبتنی بر میزان بودجه مسافر از مسایل شاخص موردمطالعه است.

    یافته ها

    در مدل سازی های انجام شده عوامل و معیارهای موثر بسیاری لحاظ شده است و میزان ظرفیت پذیرش هتل ها در شهرهای منتخب مسافران و ارایه انواع اتاق ها با قیمت گذاری های مختلف و بررسی عناصر وابسته به خدمات ارایه شده برای مسافر توسط هتل و دسترسی های مختلف هتل که مبتنی بر مدل درآمد هتل هاست، تاثیر به سزایی در برآورد وضعیت عوامل رقابتی هتل ها دارد. به جهت پیش بینی های مدنظر سطح تقاضای انواع مسافران جهت رزرو هتل طی دوره های مختلف زمانی در فصول متفاوت گردشگری بر اساس بودجه تخصیص داده شده توسط مسافر برای پرداخت هزینه ها در طی الگوی سفر و نتایج مرتبط مستخرج از مدل درآمدی برآورد شده و عوامل تاثیرگذار در انتخاب هتل و حمل ونقل و چگونگی سفر شناسایی شده است.

    اصالت/ارزش افزوده علمی:

     طرح مسایل NP-Hard در پژوهش حاضر سبب شده است تا در ابعاد کوچک از استراتژی های دقیق و در ابعاد متوسط و بزرگ از الگوریتم های فراابتکاری NSGA-II و MOPSO جهت حل بهره گرفته شود. نتایج مستخرج از محاسبات صورت گرفته حاکی از آن است که الگوریتم های پیشنهادی روش کارا و مناسبی برای حل مسایل بوده است.

    کلید واژگان: مدل سازی ریاضی چندهدفه, مدیریت درآمد, هزینه مسافر, بهینه سازی ازدحام ذرات, الگوریتم ژنتیک
    Mohammad-Saviz Asadi-Lari *, Maryam Abbas Ghorbani, Reza Tavakkoli-Moghaddam
    Purpose

    The hotel industry has become a competitive industry at the international level in recent decades, and countries have tended to use developed models and new techniques, and provide innovations to maximize income from it. As a result, it is critical to pay attention to how we can manage hotel income while noticing travel and passenger transportation costs and use modeling compatible with this field to optimize goal achievement.

    Methodology

    The problems of optimizing hotel revenue management, passenger cost management, and analyzing how to expand the transportation used by them have been studied in this research. One of the key issues studied is to predict how to transport a passenger and choose its type based on different modes of travel such as air, rail, water, and road based on the amount of the passenger’s budget.

    Findings

    Many effective factors and criteria have been considered in the modeling done, and the amount of hotel reception capacity in the selected cities of travelers and the provision of various types of rooms with different pricing, and the examination of elements related to the services provided to travelers by the hotel and different accesses of the hotel, which is based on the hotel’s revenue model, affect on. It is useful to estimate the state of competitive factors of hotels.  Noteworthy, the transfer and mode of transportation have been determined to predict the level of demand for hotel reservations for all types of travelers during different periods in different tourism seasons. This subject is based on the traveler’s budget allocated for paying expenses during the travel pattern and the related results extracted from the estimated income model, as well as the influencing factors in choosing the hotel and transportation.

    Originality/Value: 

    In the current study, the design of NP-Hard problems led to the use of exact methods in small-sized problems and two multi-objective meta-heuristic algorithms, namely NSGA-II and MOPSO, in medium- and large-sized problems. The computation results show that the proposed algorithms are efficient and suitable methods for problem-solving.

    Keywords: Multi-objective mathematical modeling, Revenue Management, Passenger cost, Particle Swarm Optimization, Genetic Algorithm
  • A. Shabanpour, M. Bashiri, R. Tavakkoli-Moghaddam, A. Safi Samghabadi

    One of the topics that have been studied a lot in the field of airline industry optimization is related to flight planning, and air fleets, and how they relate to each other, which is called airline scheduling. Despite the high importance of this issue in the profitability of airline companies and the proper use of their resources, the high computational complexity of these models has led to considering each of them in a mathematical model separately, and as a result, the accuracy of the final decision will be decreased. So far, many articles have studied various relevant issues, in some cases, efforts to create integration in the process can be observed. However, there is a few operational views of the issue, and some key requirements were neglected due to the simplification of provided models. In this study, an integrated model of the two main stages of airline planning, including fleet allocation and aircraft maintenance routing, is considered simultaneously, and the performance of the developed model is investigated using real data from one of the airlines. Also, a sensitivity analysis of the model to some relevant parameters confirms the validity of the developed mathematical model and the solution algorithm. Then, a comparative study was investigated to compare the performance of the developed model with the operational method, including solving sub-problems stepwise. Also, the results are compared with the developed and similar method from the previous studies. The results confirm the superiority of the developed mathematical model.

    Keywords: Airline Scheduling, Fleet Assignment, Aircraft Maintenance Routing, Long Term Planning
  • Morteza Ghomi-Avili, Seyed Taghi Akhavan Niaki, Reza Tavakkoli Moghaddam *

    In recent years, blockchain technology changed supply chain processes enormously. Moreover, transparency and traceability became necessary in supply chains due to customers’ need for more information on services or products. This paper attempts to ascertain transparency in a joint pricing and sustainable closed-loop supply chain network design problem using blockchain technology. To assure supply chain transparency, the pricing process is done using smart contracts. Smart contracts can modify malfunctions while purchasing returned products from customers. Then, using the derived prices of adopting smart contracts, the optimal design of the closed-loop supply chain network is obtained in an optimization process. Afterward, a fuzzy satisfying approach is used to find the optimal solution among economic, social, and environmental objective functions. Then, the model is evaluated using a numerical case problem. Sensitivity analyses are explicitly done to show the impacts of considering a blockchain-based method, production, and distribution capacity expansions, and sustainability concerns in the proposed problem. It is also shown that implementing a blockchain-based method delivers %5 more profit on average. It is also proved that expansions in production capacity are approximately %15 better than increasing distribution capacities. Finally, it is demonstrated that the fuzzy satisfying approach can deliver an optimal solution maximizing the minimum satisfaction of each objective function.

    Keywords: Blockchain technology, Supply chain network design, Sustainability, Transparency, fuzzy satisfying approach
  • F. Navazi, Z. Sazvar *, R. Tavakkoli-Moghaddam
    Perishable products may expire if their holding time exceeds their shelf-life. In this study, along with designing a forward flow to distribute perishable products; remained perished products at retailers can be gathered for recycling during distributing fresh products. To mitigate the waste, recycled products are offered to a secondary market. A mathematical model for this Closed-Loop Location-Routing-Inventory Problem (CL-LRIP) is developed by considering multi-compartment trucks, simultaneous pickup and delivery, technology selection, and risk of urban traffic. Based on three sustainability pillars, three objective functions are considered. This way, the interests of the network's three main stakeholders are embedded. The proposed model is solved by the Torabi-Hassini method. Two evolutionary algorithms, including Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and a new hybrid one, are also developed to solve large-sized cases of the NP-complete problem. Statistical tests show the superiority of the hybrid algorithm in the computational time (CT) metric, which is about 0.4 NSGA-II’s CT. The results indicate the importance of closing the network loop for perishable products. Finally, the sensitivity analysis determined that 83.33 % decrease in recycled product’s sale price causes 9.08% increase in costs, 2.77% decrease in environmental side-effects, and 5.16% decrease in social objectives, which are significant.
    Keywords: Closed-loop supply chain, Location-routing-inventory problem, Perishability, Simultaneous Pickup, Delivery, Sustainability, multi-objective meta-heuristics
  • محمد شهبازی، رضا توکلی مقدم*، بهدین واحدی نوری

    در این نوشتار، مسیله ی طراحی سفر گروهی گردشگران با توجه به اماکن خوشه بندی شده و خستگی گردشگران مورد مطالعه قرار می گیرد. برای جابه جایی بین اماکن، وسایل نقلیه ی متفاوتی وجود دارد. هر مکان گردشگری در پنجره ی زمانی مشخصی بازدید می شود. نوآوری این پژوهش عبارت است از تقسیم فعالیت گردشگران به سه خوشه ی: جاذبه های گردشگری، فروشگاه ها و رستوران ها با هدف کاهش خستگی آنان. گردشگران باید دست کم یک مکان از هر خوشه را ملاقات کنند. ضرورت پژوهش، ارایه ی مدلی ریاضی برای اعمال عنصر خستگی به برنامه ی سفر گردشگران است. یک مدل ریاضی خطی عدد صحیح مختلط دو هدفه برای طراحی سفر بهینه ی گردشگران ارایه شده که ترکیبی از سلیقه و وضعیت مالی گردشگران را بر اساس اولویتشان، در برنامه ی سفر اعمال می کند. همچنین برای بررسی تاثیر برخی پارامترها ازجمله هزینه ی بازدید از اماکن و پنجره ی زمانی، روی هریک از توابع هدف تحلیل حساسیت انجام گرفته است.

    کلید واژگان: مسئله ی مسیریابی گردشگر, خوشه های اماکن گردشگری, پنجره ی زمانی, خستگی گردشگر, برنامه ریزی آرمانی وزنی
    M. Shahbazi, R. Tavakkoli-Moghaddam *, B. VAHEDI-NOURI

    This paper optimizes a tour route for tourists in groups considering time windows and tourist fatigue. It is based on points of interests, which are
    grouped in clusters and is a branch of an orienteering problem, known as a Tourist Trip Design Problem with clustered points of interests. There are a variety of transportation modes for trips, in which all the tourists in a group can choose one respecting some constraints, such as time, distance, and possibility of using a specific vehicle. Each point of view has starting and finishing service times for tourists. Therefore, each point of interest can be visited only in a special time window. In such problems, human health and energy should be noticed so that tourists can enjoy most of the tour and the total utility is increased. One of important factors in human health and energy is fatigue. To apply the factor into the problem and express it implicitly, points of interests are grouped into three clusters based on activities that tourists do in each kind of point of views: tourist attractions, shopping malls, and resting places. In each route, tourists must visit at least one place of each cluster so that fatigue can be relieved. A mixed-integer linear programming model with two objective functions is proposed. The model is verified and assessed through five numerical examples that is designed for a hypothetical tourist area. The example is solved by GAMS software using the CPLEX solver. Also, the sensitivity analysis based on each objective function separately is performed on some of the parameters, such as visiting costs and time windows. Therefore, both tourists and managers with certain points of interests can plan and change them to decrease the cost and increase the utility and visits.

    Keywords: Orienteering problem, Clustering of points of interests, Time Window, Tourist fatigue, weighted goal programming
  • M. Mazinani, R. Tavakkoli-Moghaddam, A. Bozorgi-Amiri

    Cash transfer from the central treasury to the bank branches and automated teller machines (ATMs) all over the city is one of the vital processes in a banking system. There are multiple factors (e.g., location of the treasury, transportation fleet, geographic distribution of the branches and ATMs, the demand for cash, customer satisfaction, and traffic that influence the efficiency of the cash transfer). Moreover, environmental issues, and in particular the issue of greenhouse gas (GHG) emissions are given weight. In this paper, a new mathematical model for a location-routing problem with transport vehicles in the banking system is developed based on urban traffic in such a way that three objectives of decreasing greenhouse emissions, reducing location and routing costs, and increasing customer satisfaction are taken into consideration simultaneously. Furthermore, a new multi-objective genetic algorithm hybridized with a PROMETHEE method, namely the multi-objective genetic-PROMETHEE algorithm (MOGPA), is developed to tackle the proposed model. The efficiency of the proposed algorithm is examined by comparing it with the non-dominated sorting genetic algorithm (NSGA-II) and multi-objective imperialist competitive algorithm (MOICA) for the real-case issue of Saman Bank. Because management assumptions are considered in the preference functions of the proposed algorithm, the results show that the solutions of the proposed algorithm are more efficient and closer to reality.

    Keywords: Cash-in-transit, Pollution-location-routing Problem, PROMETHEE Method, Genetic Algorithm
نمایش عناوین بیشتر...
فهرست مطالب این نویسنده: 160 عنوان
  • دکتر رضا توکلی مقدم
    دکتر رضا توکلی مقدم
    (1376) دکتری مهندسی صنایع، دانشگاه تهران
نویسندگان همکار
  • فریبرز جولای
    فریبرز جولای
    استاد تمام دانشکدگان فنی، دانشگاه تهران، تهران، ایران
  • دکتر محمد فلاح
    دکتر محمد فلاح

  • دکتر سمراد جعفریان نمین
    دکتر سمراد جعفریان نمین
    دانش آموخته دکتری گروه مهندسی صنایع، دانشگاه یزد، یزد، ایران
  • دکتر علی بزرگی امیری
    دکتر علی بزرگی امیری
    دانشیار
  • ملیحه ابراهیمی
    ملیحه ابراهیمی
    استادیار مهندسی صنایع، دانشگاه کوثر بجنورد، بجنورد، ایران
  • دکتر رامین صادقیان
    دکتر رامین صادقیان
    دانشیار مهندسی صنایع، دانشگاه پیام نور، تهران، ایران
بدانید!
  • این فهرست شامل مطالبی از ایشان است که در سایت مگیران نمایه شده و توسط نویسنده تایید شده‌است.
  • مگیران تنها مقالات مجلات ایرانی عضو خود را نمایه می‌کند. بدیهی است مقالات منتشر شده نگارنده/پژوهشگر در مجلات خارجی، همایش‌ها و مجلاتی که با مگیران همکاری ندارند در این فهرست نیامده‌است.
  • اسامی نویسندگان همکار در صورت عضویت در مگیران و تایید مقالات نمایش داده می شود.
درخواست پشتیبانی - گزارش اشکال