به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

abolfazl poureidi

  • Abolfazl Poureidi *, Jafar Fathali
    Given a graph $G=(V,E)$,  a  function  $f:V\to \{0,1,2,3,4\}$ is a triple Roman  dominating function (TRDF)  of $G$, for each vertex $v\in V$,  (i) if $f (v ) = 0 $, then  $v$ must have either one neighbour in $V_4$, or either two neighbours in $V_2 \cup  V_3$ (one neighbour in $V_3$) or either three neighbours in $V_2 $, (ii) if $f (v ) = 1 $, then $v$ must have either one neighbour in  $V_3 \cup  V_4$  or either two neighbours in $V_2 $, and if $f (v ) = 2 $, then $v$ must have one neighbour in $V_2 \cup  V_3\cup  V_4$. The triple Roman  domination number of $G$ is the  minimum weight of an TRDF  $f$  of $G$, where the weight of $f$ is $\sum_{v\in V}f(v)$.  The triple  Roman  domination problem is to compute the  triple Roman  domination number of a given graph.  In this paper, we study the triple  Roman  domination problem. We show that   the problem is NP-complete for  the  star convex bipartite  and the   comb convex bipartite graphs and is APX-complete for graphs of degree at~most~4. We propose a linear-time algorithm for computing  the triple Roman  domination number of proper interval graphs.  We also   give an $( 2 H(\Delta(G)+1) -1  )$-approximation algorithm  for solving the problem  for any graph $G$,  where   $  \Delta(G)$ is the maximum degree of $G$ and $H(d)$ denotes the first $d$ terms of the harmonic  series. In addition, we prove  that  for any $\varepsilon>0$  there is no  $(1/4-\varepsilon)\ln|V|$-approximation  polynomial-time   algorithm for solving  the problem on bipartite and split  graphs, unless NP $\subseteq$ DTIME $(|V|^{O(\log\log|V |)})$.
    Keywords: Triple Roman domination, Approximation algorithm, NP-complete, Proper interval graph, APX-complete
  • Abolfazl Poureidi *
    Let $G=(V,E)$ be a graph.  A double Roman dominating function  (DRDF) of   $G $   is a function   $f:Vto {0,1,2,3}$  such that, for each $vin V$ with $f(v)=0$,  there is a vertex $u $  adjacent to $v$  with $f(u)=3$ or there are vertices $x$ and $y $  adjacent to $v$  such that  $f(x)=f(y)=2$ and for each $vin V$ with $f(v)=1$,  there is a vertex $u $    adjacent to $v$    with  $f(u)>1$.  The weight of a DRDF $f$ is   $ f (V) =sum_{ vin V} f (v)$.   Let $n$ and  $k$ be integers such that  $3leq 2k+ 1  leq n$.  The   generalized Petersen graph $GP (n, k)=(V,E) $  is the  graph  with  $V={u_1, u_2,ldots,  u_n}cup{v_1, v_2,ldots, v_n}$ and $E={u_iu_{i+1}, u_iv_i, v_iv_{i+k}:  1 leq i leq n}$, where  addition is taken  modulo $n$. In this paper,  we firstly   prove that the  decision     problem  associated with   double Roman domination is NP-omplete even restricted to planar bipartite graphs with maximum degree at most 4.  Next, we   give  a dynamic programming algorithm for  computing a minimum DRDF (i.e., a  DRDF   with minimum weight  along  all   DRDFs)  of $GP(n,k )$  in $O(n81^k)$ time and space  and so a  minimum DRDF  of $GP(n,O(1))$  can be computed in $O( n)$ time and space.
    Keywords: Double Roman dominating function, Algorithm, Dynamic programming, generalized Petersen graph
  • Abolfazl Poureidi *
    Let $G=(V,E)$ be a given graph of order $n $. A function $f : V to {0,1, 2}$ is an independent Roman dominating function (IRDF) on $G$ if for every vertex $vin V$ with $f(v)=0$ there is a vertex $u$ adjacent to $v$ with $f(u)=2$ and ${vin V:f(v)> 0}$ is an independent set. The weight of an IRDF $f$ on $G $ is the value $f(V)=sum_{vin V}f(v)$. The minimum weight of an IRDF among all IRDFs on $G$ is called the independent Roman domination number of~$G$. In this paper, we give algorithms for computing the independent Roman domination number of $G$ in $O(|V|)$ time when $G=(V,E)$ is a tree, unicyclic graph or proper interval graph.
    Keywords: Independent Roman dominating function, Algorithm, tree, Unicyclic graph, Proper interval graph
  • Abolfazl Poureidi *
    Let $n$ and $k$ be integers such that $3leq 2k+ 1 leq n$.The generalized Petersen graph $GP(n, k)=(V,E) $ is the graph with $V={u_1, u_2,ldots, u_n}cup{v_1, v_2,ldots, v_n}$ and $E={u_iu_{i+1}, u_iv_i, v_iv_{i+k}: 1 leq i leq n}$, whereaddition is in modulo $n$. A subset $Dsubseteq V$ is a dominating set of $GP(n, k)$ if for each $vin Vsetminus D$ there is a vertex $uin D$ adjacent to $v$. The minimum cardinality of a dominating set of $GP(n, k)$ is called the domination number of $GP(n, k)$.
    In this paper we give a dynamic programming algorithm for computing the domination number of a given $GP(n,k )$ in $mathcal{O}(n)$ time and space for every $k=mathcal{O}(1)$.
    Keywords: Dominating set, Algorithm, Dynamic Programming, Generalized Petersen graph
  • Abolfazl Poureidi *
    Let $G=(V,E)$ be a graph. A doubleRoman dominating function (DRDF) on $G$ is a function$f:Vto{0,1,2,3}$ such that for every vertex $vin V$if $f(v)=0$, then either there is a vertex $u$ adjacent to $v$ with $f(u)=3$ orthere are vertices $x$ and $y$ adjacent to $v$ with $f(x)=f(y)=2$ and if $f(v)=1$, then there is a vertex $u$ adjacent to $v$ with$f(u)geq2$.A DRDF $f$ on $G$ is a total DRDF (TDRDF) if for any $vin V$ with $f(v)>0$ there is a vertex $u$ adjacent to $v$ with $f(u)>0$.The weight of $f$ is the sum $f(V)=sum_{vin V}f(v)$. The minimum weight of a TDRDF on $G$ is the total double Romandomination number of $G$. In this paper, we give a linear algorithm to compute thetotal double Roman domination number of agiven tree.
    Keywords: Total double Roman dominating function, linear algorithm, Dynamic Programming, Combinatorial optimization, tree
  • Nader Jafari Rad *, Abolfazl Poureidi
    ‎Let $G=(V,E)$ be a graph‎. ‎A subset $Ssubset V$ is a hop dominating set‎‎if every vertex outside $S$ is at distance two from a vertex of‎‎$S$‎. ‎A hop dominating set $S$ which induces a connected subgraph‎ ‎is called a connected hop dominating set of $G$‎. ‎The‎‎connected hop domination number of $G$‎, ‎$ gamma_{ch}(G)$,‎‎‎ ‎is the minimum cardinality of a connected hop‎‎dominating set of $G$‎. ‎A hop‎‎Roman dominating function (HRDF) of a graph $G$ is a function $‎‎f‎: ‎V(G)longrightarrow {0‎, ‎1‎, ‎2} $ having the property that‎‎for every vertex $ v in V $ with $ f(v) = 0 $ there is a‎‎vertex $ u $ with $ f(u)=2 $ and $ d(u,v)=2 $‎.‎The weight of‎‎an HRDF $ f $ is the sum $f(V) = sum_{vin V} f(v) $‎. ‎The‎‎minimum weight of an HRDF on $ G $ is called the hop Roman‎‎domination number of $ G $ and is denoted by $ gamma_{hR}(G)‎‎$‎. ‎We give an algorithm‎‎that decides whether $gamma_{hR}(T)=2gamma_{ch}(T)$ for a given‎‎tree $T$.‎‎{bf Keywords:} hop dominating set‎, ‎connected hop dominating set‎, ‎hop Roman dominating‎‎function‎.
    Keywords: hop dominating set, connected hop dominating set, hop Roman dominating function
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال