jafar fathali
-
In this paper, we investigate a case of the inverse 1-median problem on a tree by transferring the weights of vertices which has not been raised so far. This problem considers modifying the weights of vertices via transferring weights of the vertices with the minimum cost such that a given vertex of the tree becomes the 1-median with respect to the new weights. A linear programming model is proposed for this problem. The applicability and efficiency of the presented model are shown in numerical examples and a real-life problem dealing with transferring users in a social network.Keywords: median problem, inverse optimization, location models
-
Facility location problems are one of the most important issues for healthcare organizations and centers to achieve social welfare and respond to customer needs. Proper distribution of health and treatment facilities in cities is vital to minimize costs and improve the efficiency of health centers. The main contribution of the current article is dealing with the uncertainty issue in the p-median location-efficient problem. In this article, the p-median location problem along with network data envelopment analysis (Network DEA) is used in parallel mode to calculate the efficiency of health and treatment centers. In this issue, health centers are considered as parallel networks with two departments that operate independently. Due to the precision of the input and output values, triangular fuzzy numbers and the α-level fuzzy method have been used. The primary results that consider the uncertainty provide efficient solution and suggestions for the potential location of health centers in our case study.
Keywords: Facility Location Problem, Network DEA, Healthcare, Health Centers, Triangular Fuzzy Numbers -
Given a graph $G=(V,E)$, a function $f:V\to \{0,1,2,3,4\}$ is a triple Roman dominating function (TRDF) of $G$, for each vertex $v\in V$, (i) if $f (v ) = 0 $, then $v$ must have either one neighbour in $V_4$, or either two neighbours in $V_2 \cup V_3$ (one neighbour in $V_3$) or either three neighbours in $V_2 $, (ii) if $f (v ) = 1 $, then $v$ must have either one neighbour in $V_3 \cup V_4$ or either two neighbours in $V_2 $, and if $f (v ) = 2 $, then $v$ must have one neighbour in $V_2 \cup V_3\cup V_4$. The triple Roman domination number of $G$ is the minimum weight of an TRDF $f$ of $G$, where the weight of $f$ is $\sum_{v\in V}f(v)$. The triple Roman domination problem is to compute the triple Roman domination number of a given graph. In this paper, we study the triple Roman domination problem. We show that the problem is NP-complete for the star convex bipartite and the comb convex bipartite graphs and is APX-complete for graphs of degree at~most~4. We propose a linear-time algorithm for computing the triple Roman domination number of proper interval graphs. We also give an $( 2 H(\Delta(G)+1) -1 )$-approximation algorithm for solving the problem for any graph $G$, where $ \Delta(G)$ is the maximum degree of $G$ and $H(d)$ denotes the first $d$ terms of the harmonic series. In addition, we prove that for any $\varepsilon>0$ there is no $(1/4-\varepsilon)\ln|V|$-approximation polynomial-time algorithm for solving the problem on bipartite and split graphs, unless NP $\subseteq$ DTIME $(|V|^{O(\log\log|V |)})$.Keywords: Triple Roman domination, Approximation algorithm, NP-complete, Proper interval graph, APX-complete
-
In this paper we consider the inverse and reverse network facility location problems with considering the equity on servers. The inverse facility location with equality measure deals with modifying the weights of vertices with minimum cost, such that the difference between the maximum and minimum weights of clients allocated to the given facilities is minimized. On the other hand, the reverse case of facility location problem with equality measure considers modifying the weights of vertices with a given budget constraint, such that the difference between the maximum and minimum weights of vertices allocated to the given facilities is reduced as much as possible. Two algorithms with time complexity O(nlogn) are presented for the inverse and reverse 2-facility location problems with equality measures. Computational results show their superiority with respect to the linear programming models.
Keywords: Inverse facility location, Reverse facility location, Balanced allocation, Equality measure -
Traditionally, the minimax circle location problems concern finding a circle C in the plane such that the maximum distance from the given points to the circumference of the circle is minimized. The radius of the circle can be fixed or variable. In this paper we consider the inverse case, that is: a circle C with radius r0 is given and we want to modify the coordinate of existing points with the minimum cost such that the given circle becomes optimal. Mathematical models and some properties of the cases that circle C becomes optimal with comparing to all other circles, and circle C becomes the best circle with comparing to the circles with radius r0 are presented.Keywords: Minimax circle location, inverse facility location, variable coordinates
-
Location theory is one of the most important topics in optimization and operations research. In location problems, the goal is to find the location of one or more facilities in a way such that some criteria such as transportation costs, customer traveling distance, total service time, and cost of servicing are optimized. In this paper, we investigate the goal Weber location problem in which the location of a number of demand points on a plane is given, and the ideal is locating the facility in the distance R_i, from the i-th demand point. However, in most instances, the solution of this problem does not exist. Therefore, the minimizing sum of errors is considered. The goal Weber location problem with the l_p norm is solved using the stochastic version of the LBFGS method, which is a second-order limited memory method for minimizing large-scale problems. According to the obtained numerical results, this algorithm achieves a lower optimal value in less time with comparing to other common and popular stochastic optimization algorithms.
Keywords: Goal Weber location problem, Quasi Newton algorithms, LBFGS methods, Stochastic optimization methods -
In this paper, we discuss the obnoxious and semi-obnoxious version of the backup 2-median problem on a tree. In the obnoxious case of the 2-median problem, all vertices have negative weights, whereas in the semi-obnoxious model the vertices may have either positive or negative weights. In these two problems, we should find the location of two facility servers on the tree so that the sum of minimum weighted distances from vertices in the tree to the set of functioning servers is minimized. In the backup model, each facility server may probably fail. If a facility server fails, the remaining server should serve the clients. Vertex optimality is an important property for the 2-median problem. This property indicates that the set of vertices involves an optimal solution of the 2-median problem. We verify that the vertex optimality holds for the semi-obnoxious backup 2-median problem on a tree network. In the obnoxious 2-median problem, the set of leaves contains an optimal solution, we show that this property does not hold for the obnoxious backup 2-median problem.Keywords: 2-median, backup, obnoxious, semi-obnoxious, positive, negative weight
-
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 1, Winter-Spring 2021, PP 669 -678
The objective of the classical version of the minisum circle location problem is finding a circle $C$ in the plane such that the sum of the weighted distances from the circumference of $C$ to a set of given points is minimized, where every point has a positive weight. In this paper, we investigate the semi-obnoxious case, where every existing facility has either a positive or negative weight. The distances are measured by the Euclidean norm. Therefore, the problem has a nonlinear objective function and global nonlinear optimization methods are required to solve this problem. Some properties of the semi-obnoxious minisum circle location problem with Euclidean norm are discussed. Then a cuckoo optimization algorithm is presented for finding the solution of this problem.
Keywords: Minisum circle location, Nonlinear programming, Semi-obnoxious facility, Cuckoooptimization algorithm -
در این مقاله به مسئله مکان یابی آرمانی با وزنهای فازی و تحت تابع زیان نامتقارن لینکس پرداختهایم تا توانسته باشیم مشخصههای بیشتری از دنیای واقعی را در مدل ارایه شده بررسی نماییم. هدف این مسئله تعیین مکان یک سرویس دهنده در شعاع آرمانی (فاصله دقیقا مشخصی) تا هر یک از نقاط تقاضا است. در حالت کلی، چنین جوابی همواره موجود نیست. بنابراین کمینه کردن تابع خطای حاصل از فاصله سرویس دهنده تا نقطه ایده آل مطلوب است. از آنجایی که در بسیاری از موقعیتهای زندگی واقعی، خطای مثبت و خطای منفی با اندازههای یکسان، اغلب مفاهیم متفاوت اقتصادی و مادی دارند، بدین منظور برای اولین بار از تابع زیان نامتقارن لینکس استفاده شده است که بین خطاهای مثبت و منفی با فاصله یکسان تمایز قایل میباشد. این مسئله ابتدا در حالت قطعی مورد بررسی قرار گرفته. در این مقاله ابتدا در قالب یک قضیه نشان داده می شود که مسئله دارای جواب شدنی است و جواب بهینه مسئله در پوسته گسترش یافته مستطیلی نقاط تقاضا قرار دارد. در ادامه برای تعیین جواب بهینه مسیله، یک الگوریتم گرادیانی شبه-وایزفیلد ارایه شده و با بیان چند قضیه نشان داده می شود که این الگوریتم به جواب بهینه مسئله همگرا است. همچنین برای تایید صحت نتایج بدست آمده از این روش، جواب های بدست آمده را با الگوریتم فراابتکاری رقابت استعماری نیز مقایسه شده است. در پایان، برای اولین بار مسئله در حالت فازی مدل بندی ریاضی شده و جوابهای آن به کمک الگوریتم ژنتیک سه هدفه با مدل قطعی در قالب یک مثال مقایسه و تحلیل شده است.
کلید واژگان: مکانیابی آرمانی فازی، تک وسیلهای، تابع زیان لینکس، فراابتکاریIn this paper, a fuzzy goal single facility location problem under to asymmetric Linex loss function is discussed. The aim of this paper is to determine the location of a facility center in the ideal radius to each of the demand points. In general, such a response is not always available. Therefore, minimizing the error function obtained from the distance of facility center to the ideal point is desirable. As, in many real-life situations, positive error and negative error of the same size often have different economic and material implications, a asymmetric Linex loss function is used for the first time where distinguishes between positive and negative errors with the same distance. In this paper, first, this problem is first investigated in a definite manner and by proving a theorem it is shown that the problem has a feasible solution and the optimal solution of the problem lies in the expanded rectangular shell of the demand points. In the following, To determine the optimal solution of the problem, a gradient quasi-Weisfield algorithm is presented, and by proposing some theorems, it is shown that this algorithm is convergent to the optimal solution of the problem. Also, to confirm the accuracy of the results obtained from this method, the obtained results are compared with the metaheuristic colonial competition algorithm. Finally, for the first time, the problem is modeled in fuzzy mathematical mode, and using a three-objective genetic algorithm its answers are compared and analyzed with a definite model.
Keywords: Fuzzy Goal location, Single Facility, Linex Penalty Function, Meta-Heuristic -
This paper deals with the case of variable weights of the inverse model of the minimax circle location problem. The goal of the classic minimax circle location problem is finding a circle in the plane such that the maximum weighted distance from a given set of existing points to the circumference of the circle is minimized. In the corresponding inverse model, a circle is given and we should modify the weights of existing points with minimum cost, such that the given circle becomes optimal. The radius of the given circle can be fixed or variable. In this paper, both of these cases are investigated and mathematical models are presented for solving them.
Keywords: Minimax circle location, inverse facility location, variable weights -
نظریه مکانیابی یکی از مباحث جذاب در بهینهسازی و تحقیق در عملیات است. در مدلهای کلاسیک مکانیابی، هدف پیدا کردن مکان یک یا چند سرویس دهنده است به قسمی که معیارهایی از قبیل هزینه حمل و نقل، مجموع فاصله پیموده شده توسط مشتریان، زمان نهایی سرویس و هزینه سرویسدهی کمینه شود. مساله مکانیابی وبر آرمانی یک حالت خاص از مسایل مکانیابی است که اخیرا مورد توجه پژوهشگران قرار گرفته است. در این مساله ایدهآل این است که سرویس دهنده دقیقا در فاصله $r_i$ از مشتری $i$ام قرار گیرد. اما در اغلب موارد این مساله دارای جواب نیست. لذا در مساله مکانیابی آرمانی به دنبال کمینه کردن مجموع وزنی خطا هستیم. در مقالات قبلی، تابع جریمه به صورت توابع متقارن، از قبیل مجذور و قدر مطلق مجموع خطای فاصله بین مشتریان و نقطه ایدهآل در نظر گرفته شده است. در این مقاله تابع خطا را به صورت تابع لینکس در نظر میگیریم که میتواند نامتقارن باشد. حالتی که فاصلهها با نرم $L_p$ اندازه گرفته میشود را در نظر میگیریم. چند روش تکراری را برای حل مساله بررسی کرده و روشهای ارایه شده را با استفاده از چند مثال با هم مقایسه میکنیم.
کلید واژگان: مکانیابی آرمانی، تابع جریمه لینکس، روش وایزفلد، روش BFGS، مکانیابی پیوستهLocation theory is an interstice field of optimization and operations research. In the classic location models, the goal is finding the location of one or more facilities such that some criteria such as transportation cost, the sum of distances passed by clients, total service time, and cost of servicing are minimized. The goal Weber location problem is a special case of location models that have been considered recently by some researchers. In this problem, the ideal is locating the facility in the distance $r_i$, from the $i$-th client. However, in most instances, the solution to this problem doesn't exist. Therefore, the minimizing sum of errors is considered. In the previous versions of the goal location problem, the penalty functions have been considered by some symmetric functions such as square and absolute errors of distances between clients and ideal point. In this paper, we consider the asymmetric linex function as the error function. We consider the case that the distances are measured by $L_p$ norm. Some iterative methods are used to solve the problem and the results are compared with some previously examined methods.
Keywords: Continuous location, goal Weber problem, Weiszfeld-like method, linex function, BFGS method -
در این مقاله ما به بررسی یک نوع جدید از مسائل مکانیابی، به نام مسئله مکانیابی پشتیبان چند وسیلهای با در نظر گرفتن شعاع آرمانی برای هر مشتری میپردازیم. در این مسئله تعداد نقطه به عنوان مشتری همراه با شعاعهای داده شده در صفحه موجود هستند. هدف در یک مسئله مکانیابی پشتیبان چند وسیلهای با شعاع آرمانی، تعیین مکان سرویس دهنده جدید، که احتمال دارد تعدادی از آنها در آینده از کار بیافتند میباشد، به گونهای که مجموع وزنی فاصله بین سرویس دهندههای جدید تا شعاع داده شده برای مشتریان بعلاوه مجموع وزنی فاصله بین سرویس دهندهها کمینه شود. از آنجایی که در واقعیت به ندرت مکانی برای تسهیلات جدید وجود دارد که فاصله آن تا مشتریان، دقیقا برابر با شعاعهای داده شده باشند، لذا در این مدل به دنبال کمینه کردن مجموع وزنی مربعات خطا هستیم. ابتدا مدل این مسئله را بیان میکنیم، سپس یک روش تکراری (الگوریتم شبه وایزفیلد) را برای حل مسئله معرفی شده ارائه کرده و در مورد همگرایی آن بحث میکنیم و نشان میدهیم که جواب بهینه مسئله در پوسته گسترش یافته مستطیلی نقاط موجود قرار دارد. در پایان مثالهایی عددی را مطرح کرده و آنها را با استفاده از روش تکراری بیان شده حل میکنیم.
کلید واژگان: مکانیابی پیوسته، چند وسیلهای، پشتیبان، روش وایز فیلد، شعاع آرمانیIn this paper we introduce a new facility location model, called backup multifacility location problem by considering the ideal radius for each customer. In this problem the location of clients are given in the plane. A radius is assigned to each client. We should find the location of new facilities, which some of them may fail with a given probability, such that the sum of weighted distances from new facilities to the radius distance of clients and sum of weighted distances between new facilities is minimized. Since in the most instance there dose not exist the location of a new facility such that its distance to each Customers be exactly equal to given radiuses, so we try to minimize the sum of the weighted square errors. We model the problem and propose an iterative method (weiszfeld like algorithm) for solving the presented problem. Then a discussion about convergence of presented method and some numerical examples are given. We show that the optimal solution lies in an extended rectangular hull of the existing points.
Keywords: Continuose location, Multifacility, Backup, Weiszfeld method, Ideal radius -
نظریه مکانیابی یکی از مباحث مهم در بهینه سازی و تحقیق در عملیات می باشد. در مسائل مکانیابی هدف پیدا کردن مکان یک یا چند سرویس دهنده به گونه ای است که معیارهایی مانند هزینه حمل ونقل، مسافت طی شده توسط مشتریان، زمان کل سرویس دهی و هزینه حاصل از سرویس دهی بهینه شود. در این مقاله ما به مساله مکانیابی آرمانی می پردازیم که در آن مکان تعدادی مشتری در صفحه داده شده است و حالت ایده آل این است که مکانی برای سرویس دهنده تعیین کنیم به گونه ای که فاصله سرویس دهنده تا مشتری iام برابر ri باشد. اما چون چنین جوابی همواره موجود نیست، به دنبال کمینه کردن مجموع خطای حاصل از فاصله سرویس دهنده تا نقطه ایده آل هستیم. دو نوع تابع هدف کمینه کردن مجموع مربعات خطا و مجموع قدر مطلق در حالتی که تابع فاصله تحت نرم Lp اندازه گیری می شود را مورد بررسی قرار می دهیم. سپس از روش های شبه وایزفیلد، گوس- نیوتن و الگوریتم فراابتکاری رقابت استعماری برای حل آنها استفاده می کنیم. در انتها نتایج عددی حاصل از حل روش های ارائه شده را با هم مقایسه می کنیم.کلید واژگان: مکانیابی آرمانی، روش شبه وایزفیلد، روش گوس-نیوتن، رقابت استعماریLocation theory is an interstice field of optimization and operations research. In the classic location problem, the goal is finding the location of one or more facilities such that some criteria such as transportation cost, the sum of distances passed by clients, total service time and cost of servicing are minimized. In this paper, we consider the goal location problem. In the goal location problem, the ideal is locating the facility in the distances ri, from the i-th client. However, in the most instances, the solution of this problem doesn’t exist. Therefore, we consider the minimizing of distances between clients and ideal point. The minimizing sum of square errors and minimizing absolute errors under Lp norm are considered as the objective function. We use the Weiszfeld like, Gauss-Newton and imperialist competitive algorithms for solving the problem. Then we compare the results which obtained by these methods for some test problems.Keywords: goal location, Weiszfeld like algorithm, Gauss-Newton, imperialist competitive
-
در این مقاله برای نخستین بار معکوس مسئله بهینهسازی 2- میانه پشتیبان [i] بررسی شده است. در این مسئله تعدادی نقطه، مشتری در نظر گرفته می شوند و هدف این است که با تغییر پارامترهای مسئله، دو نقطه از پیش تعیین شده به سمت 2- میانه پشتیبان شدن برود. ابتدا مسائل معکوس (نوع محدودیت بودجهای و نوع حداقل هزینه) 2- میانه پشتیبان درحالت گسسته برای گرافهای عمومی مدل سازی ریاضی می شود. سپس درحالتی که گراف مدنظر درخت باشد، آنها به مسئله برنامهریزی خطی تبدیل می شوند. همچنین درحالت پیوسته برای مسئله معکوس نوع محدودیت بودجهای 2- میانه پشتیبان (با تغییر در مختصات نقاط) مدل ریاضی ارائه می شود. با توجه به NP-سخت بودن مسئله، مسئله با الگوریتمهای فرا ابتکاری ازدحام ذرات [ii] (PSO) و الگوریتم بهبودیافته ازدحام ذرات [iii] (IPSP) ، حل می شود. در نهات نتایج در حالات مختلف بررسی می شود.کلید واژگان: مکان یابی تسهیلات، بهینهسازی معکوس، 2- میانه پشتیبان، فرا ابتکاریIn this paper we consider the inverse of backup 2-median problem. In this problem, a set of weighted points are given and we should change some parameters of the problem such as weights of vertices and edges and coordinates of points such that the two given points be the backup 2-median. We present mathematical models for inverse backup 2-median problems on graphs. In the case that the underlying network is a tree, linear models are presented for the problem with variable edges and weight of vertices. We also consider the continuous case of the problem with variable coordinates of vertices on the plane. In this case, we solve the model by PSO and a hybrid improved PSO methods. Computational results are compared for the varying amounts of parameters.IntroductionThe inverse and backup location facility problems are two important branches of location theory that have been interested by many researchers in the recent decades. Let n weighted points be given in the plane or on a graph. The inverse median models investigate to change some parameters of problem such as coordinates, edge lengths and vertex weights such that the given facilities be the median points. For more information about inverse location problems see Burkard et al. (2004). On the other hand, in the backup median problems supposed that some facilities may failed. Therefore the other facilities should serve the clients. The backup 2-median problem on trees has been considered by Wang et al. (2009). Fathali (2014) investigated the backup multi-facility location problem on the plane.
In this paper we consider the combination of inverse location and backup facility location problems. We want to change coordinates, weight of vertices or length of edges with minimum cost such that the given facilities be backup median facilities.Materials and Methods2. inverse Backup 2-Median On Trees: Let T= (V, E) be a tree with n vertices. Each vertex has a nonnegative weight. Let be the distance between two points and, and be the two given vertices in T which are assumed the location of facilities. Each facility may fail with a probability. For any vertex, suppose that the cost of increasing and decreasing per unit of is and, respectively. Let and be the amounts by which the weight is increased and decreased, respectively. Then, the model of inverse backup 2-median problem can be written as follows.ConclusionIn this paper we investigated the backup 2-median problem with variable edge lengths and vertices weights on trees. The problem with variable coordinates on the plane is also considered. The models of mentioned problems and computational results which obtained by two PSO methods are presented.Keywords: Facility Location, ReverseOptimization, Backup -Median, Meta-Heuristic -
One of the most reliable indicators of the evaluation of the same units is the use of mathematical programming based method called data envelopment analysis (DEA). DEA measures the efficiency score of a set of homogeneous decision making units (DMUs) based on observed input and output. The DEA method has been added to the literature by integrating Farrell's method in such a way that each evaluation unit has multiple inputs and multiple outputs. With the advancement and evolution of this approach, DEAis now one of the active areas of research in measuring performance and has been dramatically welcomed by world researchers. Charnes, Cooper, and Rhodes (CCR) [1] first proposed DEA method to evaluate the relative efficiency for not-for-profit organizations. So far, many studies and researches have been carried out in various associations and universities around the world about DEA and its applications. The simplicity of understanding and implementing the DEA method, along with its high precision and wide application in various political, cultural, social and economic fields has led many researchers to use this method to achieve their goals. So far, more than 50,000 articles, books, theses and more have been published on DEA theories and applications, calculations and issues.
Keywords: Allocation, data envelopment analysis (DEA), balancing -
Let a graph G = (V;E) be given. In the path center problem we want to find a path P in G such that the maximum weighted distance of P to every vertex in V is minimized. In this paper a genetic algorithm and a hybrid of genetic and ant colony algorithms are presented for the path center problem. Some test problems are examined to compare the algorithms. The results show that for almost all examples the hybrid method results better solutions than genetic algorithm.Keywords: Genetic algorithm, Ant colony, Location theory, Path center, Hybrid algorithm
-
Iranian Journal of Numerical Analysis and Optimization, Volume:7 Issue: 1, Winter and Spring 2017, PP 65 -82In this paper, we consider a special case of Weber location problem which we call goal location problem. The Weber location problem asks to find location of a point in the plane such that the sum of weighted distances between this point and n existing points is minimized. In the goal location problem each existing point Pi has a relevant radius ri and its ideal for us to locate a new facility on the distance ri from Pi for i = 1, ..., n. Since in the most instances there does not exist the location of a new facility such that its distance to each point Pi be exactly equal to ri. So we try to minimize the sum of the weighted square errors. We consider the case that the distances in the plane are measured by the Euclidean norm. We propose a Weiszfeld like algorithm for solving the problem and also we use two modifications of particle swarm optimization method for solving this problem. Finally the results of these algorithms are compared with results of BSSS algorithm.Keywords: Location theory, Weiszfeld method, Particle swarm optimization
-
In this paper we study finding the (k,l)-core problem on a tree which the vertices have positive or negative weights. Let T=(V,E) be a tree. The (k,l)-core of T is a subtree with at most k leaves and with a diameter of at most l which the sum of the weighted distances from all vertices to this subtree is minimized. We show that, when the sum of the weights of vertices is negative, the (k,l)-core must be a single vertex. Then we propose an algorithm with time complexity of O(n2logn) for finding the (k,l) -core of a tree with pos/neg weight, which is in fact a modification of the one proposed by Becker et al. [Networks 40 (2002) 208].Keywords: Core, Facility location, Median subtree, Semi, obnoxious
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.