r. ameri
-
In this paper, we consider a hypervector space (in the sense of Tallini) $V$ over a field $K$. We use the fundamental relation $\varepsilon^*$ over $V$, as the smallest equivalence relation on $V$, to derived the fundamental vector space ${V}/\varepsilon^*$. In this regards, we prove that if $V$ is a (resp. quasi) topological hypervector space, then the fundamental vector space ${V}/\varepsilon^*$ with the property that each open subset of it is a complete part, then its fundamental vector space ${V}/\varepsilon^*$ is a topological vector space. Finally, we prove that for a topological vector space $(V,+,\cdot,K)$ and every subspace $W$ of $V$, the hypervector space $(\overline{V},+,\circ,K)$ is a topological hypervector space and we will prove $\overline{V}/\varepsilon^*$ and $V/W$ are homeomorphic, where $\overline{V}=V$.
Keywords: Topological Hypervector Space, Fundamental Relation, Complete Part, Homeomorphic -
Journal of Algebraic Hyperstructures and Logical Algebras, Volume:4 Issue: 2, Spring 2023, PP 123 -130We introduce a new regular relation δ on a given group G and show that δ is a congurence relation on G, with respect to module the commutator subgroup of G. Then we show that the effect of this relation on the fundamental relation β is equal to the fundamental relation γ, and we conclude that, if ρ is an arbitrary strongly regular relation on the hypergroup H, then the effect of δ on ρ, results in a strongly regular relation on H such that its quotient is an abelian group.Keywords: commutator subgroup, congruence relation, regular relation
-
In this paper, we construct the concept of general Krasner hyperring based on the ring structures and the left general Krasner hypermodule based on the module structures. This study introduces the trivial left general Krasner hypermodules and proves that the trivial left general Krasner hypermodules are different from left Krasner hypermodules. We show that for any given general Krasner hyperring $R$ and trivial left general Krasner hypermodules $A, B, {bf_{R}h}$om$(A, B)$ is a left general Krasner hypermodule and ${bf_{R}h}$om$(-, B)$, $ ({bf_{R}h}$om$(A, -) )$ is an exact covariant functor (contravariant). Finally, we show that the category ${bf_{R}GKH}$mod (left trivial general Krasner hypermodules and all (homomorphisms) is an abelian category and trivial left general Krasner hypermodules have a normal injective resolution.
Keywords: General Krasner hyperrings, (normal injective) left general Krasner hypermodules, normal injective resolution, abelian category -
This paper extends multirings to a novel concept as general multirings, investigates their properties and presents a special general multirings as notation of (m; n)-potent general multirings. This study analyzes the differences between class of multirings, general multirings and general hyperrings and constructs the class of (in)finite general multirings based on any given non-empty set. In final, we define the concept of hyperideals in general multirings and compare with hyperideals in othersimilar (hyper)structures.
Keywords: (General) multiring, (m, n)-potent (general) multiring, general hyperring, hyperideal
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.