به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

فهرست مطالب s.a. hosseinli

  • مهدی بهزاد*، سید علی حسین لی، حسام الدین ارغند، افشین بنازاده

    در این مقاله، بیشینه ی دامنه ی سیگنال زمانی شتاب به عنوان مشخصه ی ارتعاشی مناسب که نمایش گر خوبی از روند زوال یاتاقان غلتشی است انتخاب شده و به منظور پیش بینی روند زوال و عمر مفید باقیمانده به کار رفته است. در گام نخست با به کار بردن یک انتقال لگاریتمی، این مشخصه ی ارتعاشی به یک سری زمانی پایدار تبدیل شده است. سپس با کمک شبکه ی عصبی بازگشتی حافظه ی طولانی کوتاه مدت، نحوه ی رشد این مشخصه ی ارتعاشی پیش بینی شده است. این پیش بینی روی داده های دو نمونه از یاتاقان های آزمایش پرونوستیا که در ادبیات فن شناخته شده بوده و مورد استفاده محققین بسیاری قرار گرفته، اعمال شده است. با توجه به نتایج پیش بینی مدل، مدت زمان باقیمانده تا رسیدن این مشخصه ی ارتعاشی به یک آستانه ی معین ارایه شده است. همچنین اگر آستانه ی تعیین شده به معنی پایان عمر مفید یاتاقان باشد، می توان از الگوریتم پیشنهاد شده به منظور تخمین عمر مفید باقیمانده نیز بهره جست. نحوه ی عملکرد الگوریتم در راستای این هدف نیز ارایه و ارزیابی شده است.نتایج حاکی از مطابقت خوب پیش بینی مدل با داده های تجربی است.

    کلید واژگان: شبکه ی عصبی بازگشتی, شبکه ی عصبی حافظه ی طولانی کوتاه مدت, پیش بینی عمر یاتاقان غلتشی, پیش بینی ادامه ی سری زمانی, تست عمر پرشتاب یاتاقان}
    M. Behzad *, S.A. Hosseinli, H.A. Arghand, A. Banazadeh

    This paper proposes a remaining useful life (RUL) prediction method that uses the peak of the vibration acceleration signal as an appropriate feature to indicate the degradation process in the rolling element bearings (REBs). In the first step, this feature is transformed into a stationary time series using logarithmic transformation. That is because the long short-term memory neural network (LSTM-NN) works better with the stationary time series. Training the LSTM-NN is performed by this stationary time series as the input and the response is the training time series with values shifted by one time step. Therefore, the LSTM-NN learns to predict the value of the next time step at each point. In other words, to forecast the values of multiple time steps in the future, previous forecasted steps are used as inputs. Next, the values of the future time steps are returned to the main non-stationary form to predict the trend of the peak in the future. Importantly, new measured data can be used to perform new predictions. For this purpose, for every new measured data, the LSTM-NN repeats the mentioned steps and generates a new trend. This algorithm is a trend-dependent method. Therefore, an REB that has a slow degradation stage in its life, which is corresponding to the growth and expansion of defects in REBs, is appropriate to be studied by this algorithm. This method is implemented on two REBs from PRONOSTIA accelerated-life test which have been used by many researchers in the literature. According to the prediction results, the remaining time that peak amplitude trend touches a given threshold is provided. If this threshold is a criterion for the end of life (EoL), this method can be used to determine the RUL. The performance of the proposed method has been evaluated and the presented results are in a good agreement with the experimental data.

    Keywords: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Remaining Useful Life (RUL), Time series forecasting, Bearing accelerated-life test}
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال