جستجوی مقالات مرتبط با کلیدواژه « مدل وزن دار جغرافیایی » در نشریات گروه « جغرافیا »
تکرار جستجوی کلیدواژه «مدل وزن دار جغرافیایی» در نشریات گروه «علوم انسانی»-
سابقه و هدف
همه گیری کووید 19 به منزله پدیده ای جغرافیایی درنظر گرفته می شود که تجزیه وتحلیل فضایی و تاثیر جغرافیایی آن، در تصمیم گیری و جنبه های زندگی روزمره، بسیار اهمیت می یابد. سامانه اطلاعات جغرافیایی و تکنیک های مکانی می توانند نقش مهمی در تجزیه و تحلیل کلان داده های شیوع این بیماری در سطح جهانی ایفا کنند. مطالعات انجام شده باکمک تکنیک های تحلیل فضایی توانسته اند میزان اهمیت متغیرهای اجتماعی و بهداشتی را در میزان ابتلا و موارد مرگ ومیر ناشی از بیماری کووید 19 نشان دهند؛ هرچند درمورد تاثیر متغیرهای هواشناسی در این زمینه، مطابق با متفاوت بودن نتایج پژوهش های پیشین، همچنان ابهاماتی وجود دارد. با توجه به تنوع اقلیمی ایران، با انجام دادن پژوهش هایی در این زمینه به منظور آشکارسازی عوامل مهم و اثرگذار فضایی، می توان گام های موثری برداشت. بنابراین هدف این مطالعه مدل سازی و تعیین عوامل تاثیرگذار در پراکنش بیماری کووید 19، براساس داده های موجود و دردسترس است.
مواد و روش هادر این مطالعه، با استفاده از روش های رگرسیون فضایی عمومی و محلی، عوامل تاثیرگذار در پراکنش میزان ابتلا به بیماری کووید 19 بررسی شد. برای این منظور، 73 شهرستان که آمار تعداد مبتلایان به بیماری کووید 19 آنها (طی دوره ای کوتاه، از دهم اسفند 98 تا بیستم خرداد 99 به تفکیک شهرستان ها) دردسترس بوده است، انتخاب شدند. عوامل ارتفاع، تراکم جمعیت و میانگین سنی، نسبت جمعیت بالای 55 سال به جمعیت کل و همچنین پارامترهای هواشناسی شامل رطوبت، دما، فشار و سرعت باد انتخاب و رابطه آنها با این بیماری، به کمک روش های آمار فضایی، بررسی شد. براساس روش رگرسیون گام به گام تراکم جمعیت، فشار هوا، میانگین سن و سرعت باد به منزله پیش بینی کننده های معنی دار تعیین شدند و بروز بیماری با استفاده از تکنیک OLS مدل سازی شد. سپس با توجه به ناایستابودن رابطه متغیرهای مستقل با متغیر وابسته، هم در بعد فضایی و هم در بعد داده ها، تکنیک GWR به کار رفت و برای افزایش تغییرپذیری فضایی و برطرف کردن مشکل هم راستایی خطی، از روش تحلیل مولفه های اصلی و نرم افزار SPSS بهره برده شد.
نتایج و بحث:
نتایج نشان داد مدل عمومی ارائه شده به طور کلی به لحاظ آماری معنی دار است و مقادیر واریانس توجیه شده با مدل تصادفی نیست اما رابطه متغیرهای مستقل با متغیر وابسته، هم در بعد فضایی و هم در بعد داده ها، ناایستاست. همچنین مشخص شد توزیع باقی مانده ها تاحدی از توزیع نرمال انحراف نشان می دهد که چه بسا به دلیل وجود ناایستایی در مدل باشد. بنابراین تکنیک رگرسیون وزن دار جغرافیایی برای مدل سازی به کار گرفته شد. به منظور اجرای آن و افزایش تغییرپذیری فضایی برای رفع مشکل هم راستایی خطی (به دلیل وجود الگوی خوشه ای در متغیرهای هواشناسی)، روش تحلیل مولفه های اصلی استفاده شد و عوامل هواشناسی به یک فاکتور کاهش یافت. این عامل نزدیک به 70٪ تغییرات این متغیرها را توجیه می کند. کاهش عوامل متغیرهای میانگین سن و نسبت جمعیت بالای 55 سال نیز به یک عامل باعث بهبود نتایج شد. بنابراین تراکم جمعیت، عامل هواشناسی و عامل سن به منزله متغیرهای پیش بینی کننده در مدل سازی با تکنیک GWR درنظر گرفته شدند. افزایش 10درصدی ضریب تعیین تعدیل شده مدل وزن دار جغرافیایی (63٪) نشان از بهبود نسبی نتایج این مدل درقیاس با مدل عمومی دارد. نتایج آزمون خودهمبستگی فضایی موران نشان داد، با اینکه از شدت الگوی خوشه ای باقی مانده ها در این مدل درمقایسه با مدل OLS کاسته شده است، همچنان در سطح اطمینان 99٪ معنی دار است. تحلیل نقاط داغ در سطح اطمینان 95٪ نشان داد بخش های غربی استان کردستان، بخش های شمالی و غربی استان خوزستان نقاط داغ (الگوی خوشه ای کم برآورد معنی دار) و بخش های شرقی استان همدان و بخش های شمالی استان بوشهر نقاط سرد (الگوی خوشه ای بیش برآورد معنی دار) هستند. بنابراین دست کم یک متغیر تاثیرگذار در بروز این بیماری درنظر گرفته نشده است. با توجه به اینکه متغیرهای احتمالی درنظر گرفته نشده همچون عوامل فرهنگی، بهداشتی و ژنتیکی دردسترس نبوده اند و یا ممکن است اندازه گیری آنها سخت بوده باشد، از بررسی آنها صرف نظر شد.
نتیجه گیرینتایج این مطالعه اهمیت و میزان تاثیر عوامل جمعیت شناختی و محیطی را در میزان ابتلا به بیماری کووید 19 روشن کرده است و می تواند برای ادامه مطالعاتی در این زمینه راه گشا باشد.
کلید واژگان: مدل وزن دار جغرافیایی, مدل حداقل مربعات معمولی, خودهمبستگی موران, تحلیل نقاط داغ.}IntroductionThe COVID-19 epidemic is considered a geographical phenomenon, and its impact on decision-making and daily life is significant. Geographic information systems (GIS) and spatial techniques play crucial roles in analyzing the spread of COVID-19 globally. Studies using spatial analysis have highlighted the importance of social and health variables in infection and mortality rates, despite existing uncertainties about the effects of meteorological variables. Given Iran's climatic diversity, it is valuable to identify the key spatial factors influencing COVID-19. Therefore, this study aims to model and determine the factors affecting the COVID-19 epidemic based on available data.
Materials and MethodsThis study investigated the factors influencing the distribution of COVID-19 infection rates using global and local spatial regression methods. Seventy-three cities were selected, with data on COVID-19 infections available from March 10 to June 20, 2019. The factors considered were altitude, population density, average age, the ratio of the population over 55 years to the total population, and meteorological parameters, including humidity, temperature, pressure, and wind speed. Their relationships with the disease were analyzed using spatial statistics methods. Stepwise regression identified population density, air pressure, average age, and wind speed as significant predictors, and the occurrence of the disease was modeled using the Ordinary Least Squares (OLS) technique. Due to the unstable relationship between the independent and dependent variables, the Geographically Weighted Regression (GWR) technique was used. Principal Component Analysis (PCA) and SPSS software were employed to address spatial variability and multicollinearity.
Results and DiscussionThe results showed that the OLS model was statistically significant, with variance values explained by the model being non-random. However, the explanatory variables had an inconsistent relationship with the dependent variable in both geographic and data spaces. The residual distribution deviated somewhat from normal, indicating model instability. Thus, the GWR technique was applied for modeling. PCA addressed multicollinearity (due to a cluster pattern in meteorological variables), reducing meteorological factors to one component, explaining nearly 70% of the variance. The model improved by consolidating the average age and the ratio of the population over 55 into one factor. Subsequently, population density, meteorological factors, and age demographics were utilized as predictive variables in the GWR model. A 10% increase in the adjusted R-squared of the GWR model (63%) demonstrated its relative improvement over the OLS model. Moran's spatial autocorrelation test indicated that, while the cluster pattern of residuals was less pronounced in the GWR model than in the OLS model, it remained significant at the 99% confidence level. Hot spot analysis at the 95% confidence level identified the western parts of Kurdistan province and the northern and western parts of Khuzestan province as hot spots (areas of significant underestimation), and the eastern parts of Hamadan province and the northern parts of Bushehr province as cold spots (areas of significant overestimation). Thus, at least one variable affecting disease occurrence was not considered. Other potential factors, such as cultural, health, and genetic variables, were not included due to unavailability or measurement difficulties.
ConclusionThis study highlights the importance of demographic and environmental factors in COVID-19 infection rates and provides a foundation for further research in the study area.
Keywords: Geographically Weighted Regression, Ordinary Least Squares, Moran’S I Test, Hot Spot Analysis}
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.