به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

metaheuristic

در نشریات گروه مدیریت
تکرار جستجوی کلیدواژه metaheuristic در نشریات گروه علوم انسانی
تکرار جستجوی کلیدواژه metaheuristic در مقالات مجلات علمی
  • امیرحسین خیاطیان، مجید شخصی نیائی*

    یکی از روش های متنوع سازی و کاهش ریسک سبد سرمایه گذاری، افزودن طیف مختلفی از دارایی ها به آن است. تا به امروز، مدل های ریاضی بسیاری با هدف بیشینه سازی بازدهی و کمینه سازی ریسک ارائه شده اند که تنها مبتنی بر سرمایه گذاری روی سهام بازار سرمایه اند. در این مطالعه، سرمایه گذاری در پروژه ها نیز به عنوان یک نوع دارایی در کنار سهام بازار سرمایه مدنظر قرار گرفته و درباره آن مطالعه شده است. مسئله انتخاب ترکیبی پروژه و سهام از طریق تخصیص وزن بهینه به آنها، یکی از چالش های پیش روی سرمایه گذاران خواهد بود. در پژوهش حاضر، ابتدا تلاش شده است تا فضای تحلیل پروژه ها به تحلیل سهام نزدیک تر و سپس مدلی با رویکرد میانگین - نیم واریانس - نیم آنتروپی در فضای احتمالی توسعه داده شود که به منظور اعتبارسنجی آن، یک آزمایش عددی شامل 3 پروژه و 5 سهم از بازار سرمایه، به کمک سه الگوریتم فراابتکاری ژنتیک، رقابت استعماری و گرگ های خاکستری حل شده اند. دستاورد اصلی این پژوهش، ارائه مدلی برای توصیه به سرمایه گذاران درباره سبدهای سرمایه گذاری با سطوح ریسک مختلف است. نتایج حاصل از آزمایش عددی حاصل نشان می دهد که الگوریتم رقابت استعماری در مقایسه با دو الگوریتم های ژنتیک و گرگ های خاکستری، پاسخ های بهتری ارائه کرده است. روش پیشنهادی می‏تواند توسط طیف وسیعی از سرمایه گذاران و مدیران واحدهای مختلف سرمایه گذاری در موسسات مختلف، به کار رود.

    کلید واژگان: بهینه سازی چندهدفه، سبد پروژه، سبد سهام، فراابتکاری، محدودیت کاردینالیتی، نیم آنتروپی
    Amirhosein Khayyatian, Majid Shakhsi-Niaei *
    Purpose

    Diversifying investment portfolios by incorporating a variety of assets is a well-established strategy for mitigating risk and enhancing returns. Traditionally, mathematical models for portfolio optimization have primarily focused on stock investments within the capital market. However, this study extends the scope of portfolio optimization to encompass both project and stock investments. This is a critical advancement as investors increasingly grapple with allocating budgets across these two asset types simultaneously. Therefore, this paper proposes a novel mixed portfolio optimization model that uses the Mean-SemiVariance-SemiEntropy approach. By incorporating project investments alongside traditional stocks, the proposed model offers more efficient portfolios that can lead to improved return/risk ratios for investors seeking to optimize their overall financial strategy.

    Design/methodology/approach:

     An attempt has been made to bridge the gap between the distinct spaces of projects and stocks to facilitate their joint analysis. Subsequently, a Mean-SemiVariance-SemiEntropy approach has been employed to develop a model within a probabilistic framework. For validating this model, a numerical experiment involving three projects and five stocks from the capital market has been tackled, considering the preferences of an investor. Finally, the optimization problem has been solved using three metaheuristic algorithms: Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA), and Gray Wolfs Optimization (GWO).

    Findings

    The results obtained by solving the model using the above-mentioned metaheuristic algorithms demonstrated that despite the high speed of the GWO algorithm, the solutions provided by the GWO algorithm were not satisfactory compared to the GA and ICA algorithms. On the other hand, the acceptable speed with nondominated solutions was the advantage of the ICA algorithm over the GA algorithm. The evaluation of various performance metrics also revealed that the ICA algorithm outperformed the GA and GWO algorithms in this problem. Also, the inclusion of semi-entropy as a risk assessment metric led to an improvement in the return on the investment portfolios.

    Research limitations/implications: 

    Incorporating investor constraints and preferences, such as cardinality and boundary constraints, into the model forms an NP-hard problem. Consequently, exact solution methods are replaced by non-exact methods, such as metaheuristic algorithms. Given the diversity of project contracts, this study concentrated solely on projects with cost-plus contracts, where the entire project or a portion can be selected for partnership. Similar to the Markowitz model, the projects' returns such as stocks' returns were assumed to be normally distributed.Practical implications: This study significantly enhanced diversification, increased potential returns, and reduced risk for investors by introducing a novel mixed project-and-stock portfolio optimization model. The proposed approach can be implemented by a wide range of investors and managers of investment units in various organizations, bringing a new perspective to investment management.

    Social implications: 

    The far-reaching implications of this study extend beyond the realm of investment management, permeating social, economic, and political areas. The innovative mixed project-and-stock portfolio problem has the potential to positively transform society using fostering innovation, stimulating economic growth, and enhancing financial knowledge. This paper can foster economic growth and job creation by providing new investment opportunities and increasing investment in productive ventures. In summary, this study has taken a significant step towards improving social and economic well-being by introducing an innovative model for resolving investment challenges.

    Originality/value:

     The innovation and strength of this research lies in incorporating projects as a new asset class into the traditional portfolio model. This goes beyond simply adding a new asset to an investment portfolio, as the nature of the projects introduces new complexities to the portfolio management process. For this purpose, this study employs a probabilistic approach based on historical data. In addition, the simultaneous use of two risk measures, i.e., semi-variance and semi-entropy, significantly improves the performance of the model by focusing on different risk aspects. This provides a more comprehensive picture of the risks associated with the portfolio and helps investors make more informed and wise decisions.

    Keywords: Multi-Objective Optimization, Project Portfolio, Stock Portfolio, Metaheuristic, Cardinality Constraints, Semi-Entropy
  • Huda Hasan Alsaabri, Hamza Mohammed Ridha Al-Khafaji *
    Fog computing is considered a promising solution to minimize processing and networking demands of the Internet of things (IoT) devices. In this work, a model based on the energy consumption evaluation criteria is provided to address the deployment issue in fog computing. Numerous factors, including processing loads, communication protocols, the distance between each connection of fog nodes, and the amount of traffic that is exchanged, all have an impact on the re-search system's overall energy consumption. The power consumption for implementing each com-ponent on the fog node as well as the power consumption for information exchange between the fog nodes are taken into account when calculating each fog node's energy use. Each fog node's energy consumption is closely correlated to how its resources are used, and as a result, to the average normalized resource utilization of a fog node. When the dependent components are spread across two distinct fog nodes, the transfer energy is taken into account in the computations. The sum of the energy used for transmission and the energy used for computational resources is the entire amount of energy consumed by a fog node. The goal is to reduce the energy consumption of the fog network while deploying components using a novel metaheuristic method.  Therefore, this work presents an enhanced water strider algorithm (EWSA) to address the problem of deploying application components with minimum energy consumption. Simulation experiments with two scenarios have been conducted based on the proposed EWSA algorithm. The results show that the EWSA algorithm achieved better performance with 0.01364 and 0.01004 optimal energy consumption rates.
    Keywords: Internet of Things, Fog Computing, energy-efficient, applications deployment, courtship learning-based water strider algorithm, metaheuristic
  • Hamidreza Mohammadi, Reza Ehtesham Rasi

    Managing supply chain operations in a reliable manner is a significant concern for decision-makers in competitive industries. In recent years consumers and legislation have been pushing companies to design their activities in such a way as to reduce negative environmental impacts more and more. It is therefore important to examine the optimization of total supply chain costs and environmental impacts together. However, because of the recycling of deteriorated products, the environmental impacts of deteriorating items are more significant than those of non-deteriorating ones. The subject of supply chain of deteriorating products, simultaneously considering costs and environment has gained attention in the academia and from the industry. Particularly for deteriorating and seasonal products, such as fresh produce, the issues of timely supply and disposal of the deteriorated products are of high concerns. The objective of this paper is to develop multi objective mathematical model and to propose a new replenishment policy in a centralized supply chain for deteriorating products. In this model, the manufacturer produces a new product and delivers it to a distant market, and then the distributor buys the product and sells it to the end consumers. This study presents a new mathematical model of the location-routing problem (LRP) of facilities in supply chain network (SCN) for deteriorating products through taking environmental considerations, cost, delivery time and customer satisfaction into account across the entire network and customer satisfaction. In order to solve the model, the combination of the two red deer algorithm (RDA) and annealing simulation (AS) was proposed. We then perform the network optimization in SCN and provide some managerial insights. Finally, more promising directions are suggested for future research.

    Keywords: Location-Routing, Supply Chain, Deteriorating Products, Metaheuristic
  • سید محمد علی خاتمی فیروزآبادی*، مجید باقری، ساموئل یوسفی
    در مساله برنامه ریزی پروژه با محدودیت منابع تک حالت اجرا، فرض بر این است که هریک از فعالیت ها دارای زمان اجرای مشخص و مصرف منابع معلوم هستند و تنها به یک روش انجام می شوند؛ اما در عمل موارد بسیاری وجود دارد که در آن ها می توان با فراهم کردن منابع بیشتر، زمان فعالیت را کاهش داد. در این حالت، هر فعالیت می تواند به یکی از روش های اجرایی ممکن انجام شود و مسئله حاصل، زمان بندی پروژه با محدودیت منابع چندحالته(MRCPSP) نامیده می شود. در این تحقیق، مسئله زمان بندی پروژه منابع محدود با فعالیت های چندحالته، شامل تعیین زمان بندی پایه فعالیت های پروژه است که می تواند در چندین حالت انجام شود و روابط پیش نیازی را رعایت کند؛ در حالی که زمان پروژه، هزینه و نوسانات منابع را کمینه می سازد. در این پژوهش، مسئله زمان بندی پروژه با استفاده از ابزار شبیه سازی شبکه کنترل پروژه، وارد نرم افزار شبیه سازی (ED) می شود و خروجی های آن با خروجی های حاصل از یک الگوریتم فراابتکاری مقایسه می شود. درنهایت، راهکار های مدیریتی به منظور بهینه سازی زمان بندی ازلحاظ کمینه سازی زمان کل، هزینه و تسطیح منابع ارائه خواهد شد.
    کلید واژگان: زمان بندی پروژه، برنامه ریزی چندهدفه، بهینه سازی، شبیه سازی، تسطیح منابع، الگوریتم فراابتکاری
    Seyed Mohammad Ali Khatami Firouzabadi *, Majid Bagheri, Samuel Yousefi
    In the single-mode resource-constrained project scheduling problem, it is assumed that each activity has a specified known execution time and resource consumption can be done only in one way. In practice, there are many cases in which the make span can be reduced by providing additional resources activities. In this case, each activity can be done in one of the procedures, which is called the multi-mode resource-constrained project scheduling. In this paper, the problem includes determination of the basic schedule for the project activities which may be done in several models and the precedence relations are met, While the project make-span, cost and resource fluctuations are minimal. In this research project scheduling problem network will model using ED simulation software and the results of the simulation and a meta-heuristic algorithm has been compared. Finally, management strategies to optimize the scheduling, i.e such minimize total time, cost and resource leveling, will be offered.
    Keywords: Project Scheduling, Multi objective program, Simulation, optimization, Metaheuristic
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال