به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

maximum likelihood estimation

در نشریات گروه آمار
تکرار جستجوی کلیدواژه maximum likelihood estimation در نشریات گروه علوم پایه
  • Adeleh Fallah, Roshanak Zaman *
    In this paper‎, ‎based on progressively Type-II censored samples‎, ‎the maximum likelihood and Bayes estimators are derived for some lifetime parameters‎. ‎ ‎In the Bayesian framework‎, ‎the point estimations of unknown parameters under both symmetric and asymmetric loss functions are discussed‎. ‎The Bayesian estimations have been obtained using the conjugate prior and discrete priors for the shape and scale parameters‎, ‎respectively‎. ‎We also provide Bayes prediction intervals for the times to failure of units censored in multiple stages in a progressively censored sample‎. ‎Finally‎, ‎two numerical examples are presented to illustrate the results.
    Keywords: Bayes Estimation, Maximum Likelihood Estimation, Prediction Intervals, Progressively Censored Samples, Proportional Hazard Model
  • Vahid Nekoukhou *, Ashkan Khalifeh
    This paper examines a novel extension of the geometric distribution characterized by two parameters, that is not created based on discretizing existing continuous models. This model, due to its analytical form of the cumulative distribution function and simple structure, can be of interest from mathematical perspectives, particularly in cases where the analysis of stochastic orders is desired. In addition, it is a suitable candidate for analyzing monotone hazard rate discrete data, in view of the fact that its hazard rate function exhibits monotonicity in both increasing and decreasing directions. Additionally, the behavior of the survival function of residual lifetime is briefly addressed. The parameters of the distribution are estimated using the maximum likelihood method, and a real-world data set is scrutinized to assess the distribution's adequacy in providing satisfactory fits.
    Keywords: Geometric Distribution, Hazard Rate Function, Infinite Divisibility, Maximum Likelihood Estimation, Residual Lifetime, Stochastic Orders
  • فاطمه شاه سنایی*، رحیم چینی پرداز

    در بعضی از پدیده های تجربی، پژوهشگران با داده هایی مواجه هستند که ذاتا ماهیت اقلیدسی ندارند. داده های دایره ای که برای اندازه گیری زاویه و یا جهت به کار می روند، از این نوع هستند. در بررسی های آماری ممکن است به جای نمونه های تصادفی با نمونه های وزنی مواجه شویم که در آنها مشاهدات متناظر با تابعی تحقق مییابند. در این مقاله به توزیع های وزنی در داده های دایره ای پرداخته می شود. با توجه به اینکه توزیع ون میزس کاربرد بسیار وسیعی در مدل بندی داده های دایره ای دارد، برآورد ماکسیمم درستنمایی پارامترهای توزیع دایره ای ون میزس وزنی مورد بررسی قرار می گیرد. از آنجا که ممکن است براوردگرها شناسا پذیر نباشند، به کمک توزیع پیشین مناسب ممکن است برآوردهایی منحصر به فرد به دست آورد. در یک کار شبیه سازی وزن های مختلف در توزیع دایره ای ون میزس مقایسه می شوند

    کلید واژگان: داده های دایره ای، توزیع ون میزس، تابع وزن، برآورد ماکسیمم درستنمایی، شبیه سازی رد- پذیرش
    Fatemeh Shahsanaei*, Rahim Chinipardaz

    Circular data are measured in angles or directions. In many cases of sampling, instead of a random sample, we deal with a weighted model. In such sampling, observations are provided throughout with a positive function, weight function. This article deals with weight distributions in circular data. According to von Mises distrinution is the most widely used distribution for modeling circular data, maximum likelihood estimation of parameters in weighted von Mises distributions is investigated. In a simulation study, different weights are compared in the Van Mises circular distribution.

    Keywords: Circular Data, Von Mises Distribution, Weight Function, Maximum Likelihood Estimation, Accept-Rejection Simulation
  • Vahid Nekoukhou *
    The two-parameter discrete Weibull distribution is an important model especially in reliability studies when the data are reported on a discrete scale‎. ‎The hazard rate function of a discrete Weibull distribution is monotonically increasing and decreasing‎. ‎The present paper provides a family of parametric discrete distributions which is an infinite mixture of exponentiated discrete Weibull distributions‎, ‎and versatile in fitting increasing‎, ‎decreasing‎, ‎and bathtub-shaped failure rate models to different discrete life-test data‎. ‎Some important distributional properties of the model such as the moments‎, ‎order statistics‎, ‎and infinite divisibility are investigated and the parameters of the distribution are estimated by the maximum likelihood method‎. ‎In addition‎, ‎a real data set is analyzed to show the effectiveness of the model‎. ‎Finally we conclude the paper.
    Keywords: Discrete univariate model, Infinite divisibility, Maximum likelihood estimation, Order statistics
  • S.M.T. Mirmostafaee *
    ‎ In this paper, we introduce a new extension of the XLindley distribution, called the exponentiated new XLindley ‎distribution.‎ The new model has an increasing or bathtub-shaped hazard rate function, making it suitable for modeling real-life phenomena. We study important properties of the new model, such as ‎the ‎moments, moment generating function, incomplete moments, mean deviations from the mean and ‎the ‎median, Bonferroni and Lorenz curves, mean residual life function, Rényi entropy, order statistics, and ‎‎‎k‎‎-record values. We also address the estimation of parameters using ‎the ‎maximum likelihood and bootstrap methods. A Monte Carlo simulation study is conducted to evaluate the estimators discussed in the paper. Additionally, we analyze two real data applications, including rainfall and COVID-19 data sets, to demonstrate the applicability and flexibility of the new distribution. Our results show that the new model fits the data sets better than ‎several ‎other recognized or recently introduced distributions, based on ‎some ‎well-known ‎goodness-‎of-‎fit ‎criteria.
    Keywords: Bootstrap Estimation‎, ‎Exponentiation Method‎, ‎Maximum Likelihood Estimation‎, ‎Moments‎, ‎New Xlindley Distribution‎, Simulation
  • Manijeh Mahmoodi *, Mohammadreza Salehi Rad, Farzad Eskandari

    The novel corona virus (covid-19) spread quickly from person to another and one of the basic aspects of the country management has been to prevent the spread of this disease. So the prediction of its expansion is very important. In such matters, the estimation of new cases and deaths in covid-19 has been considered by researchers. we propose an estimation of the statistical model for predicting the new cases and the new deaths by using the vector autoregressive (VAR) model with the multivariate skew normal (MSN) distribution for the asymmetric shocks and predict the samples data. The maximum likelihood (ML) method is applied to estimation of this model for the weekly data of the new cases and the new deaths of covid-19. Data are taken from World Health Organization (WHO) from March 2020 until March 2023 Iran country. The performance of the model is evaluated with the Akaike and the Bayesian information criterions and the mean absolute prediction error (MAPE) is interpreted.

    Keywords: Covid19, Forecasting, Maximum Likelihood Estimation, Multivariate Skew Normal, Skewness, Vector Autoregressive
  • علی رستمی*، محمد خنجری صادق، محمد خراشادی زاده

    در این مقاله، قابلیت اعتماد تنش-مقاومت یک سیستم منسجم در حالت تنش در سطح مولفه در نظر گرفته شده است. سیستم های منسجم سری، موازی و رادار مورد بررسی قرار می گیرند. برای سیستم های $ 2 $-مولفه ای سری یا موازی و سیستم رادار، این قابلیت اعتماد بر اساس توزیع نمایی و به روش های ماکسیمم درستنمایی، نااریب بطور یکنواخت با کمترین واریانس و بیز، برآورد می شود. همچنین برای بررسی عملکرد برآوردگرها مطالعات شبیه سازی انجام شده اند و داده های واقعی تحلیل می شوند.

    کلید واژگان: قابلیت اعتماد، مدل تنش−مقاومت، برآورد ماکسیمم درستنمایی، برآورد نااریب به طور یکنواخت دارای کمترین واریانس، برآورد بیز
    Ali Rostami*, Mohammad Khanjari Sadegh, Mohammad Khorashadizadeh

    This article considers the stress-strength reliability of a coherent system in the state of stress at the component level. The coherent series, parallel and radar systems are investigated. For 2-component series or parallel systems and radar systems, this reliability based on Exponential distribution is estimated by maximum likelihood, uniformly minimum variance unbiased and Bayes methods. Also, simulation studies have been done to check estimators' performance, and real data are analyzed.

    Keywords: Reliability, Stress-­Strength Model, Maximum Likelihood Estimation, Uniformly Minimum Variance Unbiased Estimation, Bayes Estimation
  • Ali Rostami, Mohammad Khanjari Sadegh *, Mohammad Khorashadizadeh
    In this paper‎, ‎we consider the estimation of the stress-strength reliability of a coherent system‎. ‎The distributions of stress and strength random variables are the members of a general class of distributions‎. ‎For a series-parallel system‎, ‎the reliability of the stress-strength model is estimated using the maximum likelihood estimation‎, ‎asymptotic confidence interval‎, ‎uniformly minimum variance unbiased estimation‎, ‎and Bayes estimation‎. ‎Also‎, ‎simulation studies are performed‎, ‎and two real data sets are analyzed.
    Keywords: Asymptotic confidence interval, Bayes estimation, Maximum likelihood estimation, Stress-strength reliability, Uniformly minimum variance unbiased estimation
  • S. Zamani Mehreyan, Abdolreza Sayyareh*

    We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, Brent, and the real gross domestic product, GDP, data are considered as real data. Since the Brent data does Granger-cause the GDP data, so we suggest the vector autoregressive model and select optimal model based on the model selection test. The analysis provides analytic results show that the Vuong's, Cox's and proposed test are the appropriate test for order and model selection for vector autoregressive models with Normal innovation. In simulation study, the power of proposed test at least is as good as the power of Vuong's test.

    Keywords: Cox's test, maximum likelihood estimation, mis-specified model, nested models, vector autoregressive model, Vuong's test
  • علی رستمی، محمد خنجری صادق*، محمد خراشادیزاده

    در این مقاله برآورد  R{r,k}= P(X{r:n1} < Y{k:n2}) در صورتی که تنش X  و مقاومت Y  دو متغیر تصادفی مستقل دارای توزیع نمایی معکوس با پارامترهای مقیاس مجهول هستند در نظر گرفته شده است. برآورد ماکسیمم درستنمایی R{r,k}   و بازه اطمینان مجانبی برای آن بدست آورده شده است. مطالعات شبیه سازی و عملکرد این مدل برای دو مجموعه داده واقعی نیز مورد بررسی قرار گرفته است.

    کلید واژگان: قابلیت اعتماد، مدل تنش−مقاومت، برآورد ماکسیمم درستنمایی، بازه اطمینان مجانبی
    Ali Rostami, Mohammad Khanjari Sadegh*, Mohammad Khorashadizadeh

    In this article, we consider the estimation of R{r,k}= P(X{r:n1} < Y{k:n2}), when the stress X and strength Y are two independent random variables from inverse Exponential distributions with unknown different scale parameters. R{r,k} is estimated using the maximum likelihood estimation method, and also, the asymptotic confidence interval is obtained. Simulation studies and the performance of this model for two real data sets are presented.

    Keywords: Reliability, stress­-strength Model, Maximum Likelihood Estimation, Asymptotic Confidence Interval
  • ابوذر بازیاری*

    در این مقاله، تعمیم جدیدی از توزیع گامبل ‏تبدیل شده به عنوان توزیع گامبل تبدیل شده‏ ‎‎ی مکعبی بر اساس طرح تبدیل شده ی رتبه مکعبی معرفی شده است. نشان داده می شود که برای برخی از پارامترها، تابع چگالی پیشنهادی مسوکورتیک و برای برخی دیگر از پارامترها تابع چگالی شبیه تابع پلاتیکوریک است. ویژگی های آماری این توزیع، شامل تابع بقا، تابع خطر، گشتاورها و تابع مولد گشتاور مورد مطالعه قرار گرفته شده است. پارامترهای توزیع گامبل تبدیل شده/ی مکعبی با روش ماکسیمم درستنمایی برآورد شده اند. ‏همچنین دو مثال عددی کاربرد توزیع گامبل تبدیل شده ی مکعبی را نشان داده و با توزیع گامبل و توزیع گامبل تبدیل شده مقایسه می شود. در پایان، نشان داده می شود که برای داده های ‏استفاده شده، توزیع گامبل تبدیل شده ی مکعبی، توزیع بهتری نسبت به توزیع های گامبل و گامبل تبدیل شده است.

    کلید واژگان: برآورد ماکسیمم درستنمایی، تابع مولد گشتاور، تابع درستنمایی، توزیع گامبل تبدیل شده ی مکعبی
    Abouzar Bazyari*

    In this paper, a generalization of the Gumbel distribution as the cubic transmuted Gumbel distribution based on ‎the ‎cubic ranking transmutation map is introduced. It is shown that for some of the parameters, the proposed density function is mesokurtic and for others parameters the density function is platykurtic function. The statistical properties of new distribution, consist of survival function, hazard function, moments and moment generating function have been studied. The parameters of cubic transmuted Gumbel distribution are estimated using the maximum likelihood method. Also, the application of the cubic transmuted Gumbel distribution is shown with two numerical examples and compared with Gumbel distribution and transmuted Gumbel distribution. Finally, it is shown that for a data set, the proposed cubic transmuted Gumbel distribution is better than Gumbel distribution and transmuted Gumbel distribution.

    Keywords: Cubic transmuted Gumbel distribution, Likelihood function, Maximum likelihood estimation, Moment generating function
  • معصومه قهرمانی، مریم شرفی*، رضا هاشمی

    یکی از مهم ترین چالش ها در بحث داده های سانسور فزاینده نوع دو، تعیین طرح برداشت است. طرح برداشت می تواند ثابت باشد یا به صورت تصادفی، برطبق  توزیع احتمال گسسته ای، انتخاب شود. در این مقاله ابتدا، دو توزیع توام گسسته برای برداشت های تصادفی تحت توزیع طول عمر وایبل دو پارامتری معرفی می شوند. روش های پیشنهادی مبتنی بر  فواصل نرمالیده  آماره های مرتب سانسور فزاینده نوع دو نمایی است. همچنین  امید ریاضی زمان مورد انتظار تحت روش های پیشنهادی به دست آمده  است. برآورد پارامترها بر اساس روش های ماکسیمم درستنمایی، کمترین توان های دوم و ماکسیمم حاصل ضرب فاصله ای حاصل می شوند. در ادامه، با استفاده از روش های  شبیه سازی مونت کارلو،  الگوهای برداشت پیشنهادی با الگوهای برداشت یکنواخت گسسته، دوجمله ای و طرح های برداشت ثابت از لحاظ اریبی، مجذور میانگین مربع خطای برآوردگرها و امید ریاضی زمان کل مورد انتظار آزمایش مقایسه می شوند. همچنین، نسبت امید ریاضی زمان مورد انتظار تحت سانسور فزاینده نوع دو نیز به، حالت بدون برداشت بررسی می شود. سرانجام، عملکرد رهیافت های پیشنهادی، در یک مجموعه داده  واقعی  نشان داده می شود.

    کلید واژگان: برآورد ماکسیمم حاصل ضرب فاصله ای، برآورد ماکسیمم درستنمایی، برداشت تصادفی، داده طول عمر، زمان مورد انتظار آزمایش
    Masumeh Ghahramani‎, Maryam Sharafi*, Reza Hashemi

    One of the most critical challenges in progressively Type-II censored data is determining the removal plan. It can be fixed or random so that is chosen according to a discrete probability distribution. Firstly, this paper introduces two discrete joint distributions for random removals, where the lifetimes follow the two-parameter Weibull distribution. The proposed scenarios are based on the normalized spacings of exponential progressively Type-II censored order statistics. The expected total test time has been obtained under the proposed approaches. The parameters estimation are derived using different estimation procedures as the maximum likelihood, maximum product spacing and least-squares methods. Next, the proposed random removal schemes are compared to the discrete uniform, the binomial, and fixed removal schemes via a Monte Carlo simulation study in terms of their biases; root means squared errors of estimators and their expected experiment times. The expected experiment time ratio is also discussed under progressive Type-II censoring to the complete sampling plan.

    Keywords: Expected Experiment Time, Lifetime Data, Maximum Likelihood Estimation, Maximum Product Spacing Estimation, Random Removal
  • Peter O. Peter*, Broderick Oluyede, Nkumbuludzi Ndwapi, Huybrechts Bindele

    A new generalized family of distributions called the Weibull Odd Burr III-G is introduced using the T-X transformation technique. Some of useful mathematical and statistical properties such as the hazard function, quantile function, moments, probability weighted moments, Rényi entropy, order statistics and stochastic orders are derived. The method of maximum likelihood estimation is used to estimate the model parameters. The usefulness of these family of distributions is demonstrated via simulated experiments and its special cases are applied to real life data sets to illustrate flexibility.

    Keywords: Weibull distribution, Odd Burr-III distribution, Family of distributions, Stochastic Order, Maximum likelihood Estimation
  • Morongwa Gabanakgosi *, Thatayaone Moakofi, Broderick Oluyede, Boikanyo Makubate
    A new generalized distribution called the gamma odd power generalized Weibull-G family of distributions is developed and studied. Some special models of the new family of distribution are explored. Statistical properties of the new family of distributions including the quantile function, ordinary and incomplete moments, probability weighted moments, stochastic ordering, distribution of the order statistics, and Rényi entropy are presented. The maximum likelihood method is used for estimating model parameters, and Monte Carlo simulation is conducted to examine the performance of the model. The flexibility of the new family of distributions is demonstrated by means of two applications to real data sets.
    Keywords: Generalized distribution, Maximum likelihood estimation, Power generalized Weibull distribution
  • Abdollah Saadatmand *, AliReza Nematollahi, Soltan Mohammad Sadooghi-Alvandi

    In this article, the autoregressive model of order one with exponential innovations is considered. The maximum likelihood and Bayes estimators of the autoregression parameter, under squared error loss function with non-informative prior are examined. A simulation study is conducted to compare the behavior of the estimators via their relative bias and risks. Moreover, a real data example is presented.

    Keywords: Autoregressive model, Bayes estimation, Exponential innovations, Maximum likelihood estimation
  • Ola Alsayed Abuelamayem *, Hanan Mohamed Aly
    Lifetime data has several applications in different fields such as Biology and Engineering. Failures for this type of data may occur due to several causes. In real world, causes of failures are interacting together which violates the independency assumption. Once dependency between failures is satisfied, bivariate families should be used to analyze the data. In literature, the majority of studies handle the case when data come from one source. However, in real life, data could come from different sources. One way to analyze data from different sources together and reduce the time and cost of the experiment is joint type-II censoring. To the best of our knowledge, joint type-II censoring was not yet derived using bivariate lifetime distributions. In this paper, we derive the likelihood function of joint type-II censoring using bivariate family in the presence of dependent competing risks. A simulation study is performed and two real datasets are analyzed.
    Keywords: Bayesian, Bivariate Inverted Kumaraswamy Distribution, Bivariate Marshall-Olkin Family, Dependent Competing Risk Model, Joint Type-II Censoring, Maximum likelihood estimation
  • Jiju Gillariose, Lishamol Tomy, Farrukh Jamal, Christophe Chesneau*

    Finding new families of distributions has become a popular tool in statistical research. In this article, we introduce a new flexible four-parameter discrete model based on the Marshall-Olkin approach, namely, the discrete Kumaraswamy Marshall-Olkin exponential distribution. The proposed distribution can be viewed as another generalization of the geometric distribution and enfolds some important distributions as special cases. Some properties of the new distribution are derived. The model parameters are estimated by the maximum likelihood method, with validation through a complete simulation study. The usefulness of the new model is illustrated via count-type real data sets.

    Keywords: Discrete Distributions, Exponential Distribution, Generalized Family, Geometric Distribution, Marshall-Olkin Extended Distribution, Maximum Likelihood Estimation
  • احسان بهرامی سامانی*، سمیرا بهرامیان

    رخداد داده های طول عمر مساله ای است که معمولا در تحقیق های گوناگون شامل آمارگیری ها، آزمایش های کلینیکی و مطالعات اپیدمیولوژی روی می دهد. اخیرا تحقیق های نظری وسیعی در حوزه ی تحلیل داده های طول عمر انجام شده است. با این حال، از آن جایی که معمولا اطلاعات کمی بر اساس داده ها برای برآورد صحیح پارامترهای مدل موجود است؛ استنباط ها ممکن نسبت به فرض های غیر قابل آزمون حساس باشند که نیاز به انجام یک تحلیل حساسیت را گوشزد می نماید.  در این مقاله، ما نحوه ارزیابی کردن اثر پریشیدگی پاسخ های رگرسیونی لگ - بتا وایبل را بیان می کنیم. همچنین کاربرد و تفسیر روش های تحلیل تاثیر با استفاده از  تحلیل داده های سانسور شده، مرور و تعمیم داده می شود. یک شیوه درستنمایی - مبنا که منجر به برآورده های ماکسیمم درستنمایی برای پارامترهای مدل می گردد، مورد استفاده قرار می گیرد. به منظور ارزیابی عملکرد شاخص های معرفی شده در کشف حساسیت پارامترهای کلیدی مدل، چندین مطالعه شبیه سازی انجام گرفته است. ما  به وسیله تحلیل کردن  داده های  سرطان، روش های بیان شده را تشریح می کنیم.

    کلید واژگان: تحلیل حساسیت، مدل رگرسیون لگ - بتا وایبل، داده های سانسور شده، برآورد ماکسیمم درستنمایی، داده های سرطان
    Ehsan Bahrami Samani*, Samira Bahramian

    The occurrence of lifetime data is a problem which is commonly encountered in various researches, including surveys, clinical trials and epidemioligical studies. Recently there has been extensive methodological resarech on analyzing lifetime data. Howerver, because usually little information from data is available to corretly estimate, the inferences might be sensitive to untestable assumptions which this calls for a sensitivity analysis to be performed. In this paper, we describe how to evaluate the  effect  that  perturbations to the  Log-Beta Weibull Regression  Responses. Also, we review and extend the application and  interpretation of influence analysis methods using censored data analysis. A full likelihood-based approach that allows yielding maximum likelihood estimates of the model parameters is used. Some simulation studies are conducted to evalute the performance of the proposed indices in ddetecting sensitivity of key model parameters. We illustrate the methods expressed by analyzing the  cancer data.

    Keywords: Sensitivity Analysis, Log-Beta Weibull Regression, censored data, maximum likelihood estimation, Cancer data
  • Fiaz Ahmad Bhatti*, Sedigheh Mirzaei Salehabadi, Gholamhossein G Hamedani

    We introduce a flexible lifetime distribution called Burr III-Inverse Weibull (BIII-IW). The new proposed distribution has well-known sub-models. The BIII-IW density function includes exponential, left-skewed, right-skewed and symmetrical shapes. The BIII-IW model’s failure rate can be monotone and non-monotone depending on the parameter values. To show the importance of the BIII-IW distribution, we establish various mathematical properties such as random number generator, ordinary moments, conditional moments, residual life functions, reliability measures and characterizations. We address the maximum likelihood estimates (MLE) for the BIII-IW parameters and estimate the precision of the maximum likelihood estimators via a simulation study. We consider applications to two COVID-19 data sets to illustrate the potential of the BIII-IW model.

    Keywords: Moment, Reliability, Characterizations, Maximum Likelihood Estimation
  • Mahmoud Torabi*, Alexander R. De Leon

    In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian LMMs are able to incorporate conditional dependence of longitudinal observations, they require that the data are, or some transformation of them is, Gaussian, a serious limitation in a wide variety of practical applications. Here, we introduce the class of Gaussian copula conditional regression models (GCCRMs) as flexible alternatives to conventional LMMs and GLMMs. One advantage of GCCRMs is that they extend conventional LMMs and GLMMs in a way that reduces to conventional LMMs, when the data are Gaussian, and to conventional GLMMs, when conditional independence is assumed. We implement likelihood analysis of GCCRMs using existing software and statistical packages and evaluate the finite-sample performance of maximum likelihood estimates for GCCRM empirically via simulations vis-a-vis the `naivechr('39') likelihood analys is that incorrectly assumes conditionally independent longitudinal data. Our results show that the `naivechr('39') analysis yields estimates with possibly severe bias and incorrect standard errors, leading to misleading inferences. We use bolus count data on patientschr('39') controlled analgesia comparing dosing regimes and data on serum creatinine from a renal graft study to illustrate the applications of GCCRMs.

    Keywords: Exponential Family, Gaussian Copula, Marginal Distribution, Maximum Likelihood Estimation, Random Effects
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال