جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه apx-complete در نشریات گروه علوم پایه
apx-complete
در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه apx-complete در مقالات مجلات علمی
-
Given a graph $G=(V,E)$, a function $f:V\to \{0,1,2,3,4\}$ is a triple Roman dominating function (TRDF) of $G$, for each vertex $v\in V$, (i) if $f (v ) = 0 $, then $v$ must have either one neighbour in $V_4$, or either two neighbours in $V_2 \cup V_3$ (one neighbour in $V_3$) or either three neighbours in $V_2 $, (ii) if $f (v ) = 1 $, then $v$ must have either one neighbour in $V_3 \cup V_4$ or either two neighbours in $V_2 $, and if $f (v ) = 2 $, then $v$ must have one neighbour in $V_2 \cup V_3\cup V_4$. The triple Roman domination number of $G$ is the minimum weight of an TRDF $f$ of $G$, where the weight of $f$ is $\sum_{v\in V}f(v)$. The triple Roman domination problem is to compute the triple Roman domination number of a given graph. In this paper, we study the triple Roman domination problem. We show that the problem is NP-complete for the star convex bipartite and the comb convex bipartite graphs and is APX-complete for graphs of degree at~most~4. We propose a linear-time algorithm for computing the triple Roman domination number of proper interval graphs. We also give an $( 2 H(\Delta(G)+1) -1 )$-approximation algorithm for solving the problem for any graph $G$, where $ \Delta(G)$ is the maximum degree of $G$ and $H(d)$ denotes the first $d$ terms of the harmonic series. In addition, we prove that for any $\varepsilon>0$ there is no $(1/4-\varepsilon)\ln|V|$-approximation polynomial-time algorithm for solving the problem on bipartite and split graphs, unless NP $\subseteq$ DTIME $(|V|^{O(\log\log|V |)})$.Keywords: Triple Roman domination, Approximation algorithm, NP-complete, Proper interval graph, APX-complete
-
Communications in Combinatorics and Optimization, Volume:7 Issue: 2, Summer-Autumn 2022, PP 183 -192For a simple, undirected, connected graph $G$, a function $h : V rightarrow lbrace 0, 1, 2 rbrace$ is called a total Roman ${2}$-dominating function (TR2DF) if for every vertex $v$ in $V$ with weight $0$, either there exists a vertex $u$ in $N_G(v)$ with weight $2$, or at least two vertices $x, y$ in $N_G(v)$ each with weight $1$, and the subgraph induced by the vertices with weight more than zero has no isolated vertices. The weight of TR2DF $h$ is $sum_{p in V} h(p)$. The problem of determining TR2DF of minimum weight is called minimum total Roman {2}-domination problem (MTR2DP). We show that MTR2DP is polynomial time solvable for bounded treewidth graphs, threshold graphs and chain graphs. We design a $2 (ln(Delta - 0.5) + 1.5)$-approximation algorithm for the MTR2DP and show that the same cannot have $(1 - delta) ln |V|$ ratio approximation algorithm for any $delta > 0$ unless $P = NP$. Next, we show that MTR2DP is APX-hard for graphs with $ Delta=4$. Finally, we show that the domination and TR2DF problems are not equivalent in computational complexity aspects.Keywords: Roman ${2}$-dominating function, Total Roman ${2}$-domination, APX-complete
-
Communications in Combinatorics and Optimization, Volume:3 Issue: 2, Summer and Autumn 2018, PP 143 -150A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ and every vertex in $S$ is within distance 2 of another vertex of $S$. The semitotal domination number $gamma_{t2}(G)$ is the minimum cardinality of a semitotal dominating set of $G$. We show that the semitotal domination problem is APX-complete for bounded-degree graphs, and the semitotal domination problem in any graph of maximum degree $Delta$ can be approximated with an approximation ratio of $2+ln(Delta-1)$.Keywords: semitotal domination, APX-complete, NP-completeness
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.