جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه cp-frame در نشریات گروه علوم پایه
cp-frame
در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه cp-frame در مقالات مجلات علمی
-
The set $\mathcal{C}_{c}(L)=\Big\{\alpha\in\mathcal{R}L : \big\vert\{ r\in\mathbb{R} : \coz(\alpha-{\bf r})\ne 1\big\}\big\vert\leq\aleph_0 \Big\}$ is a sub-$f$-ring of $\mathcal{R}L$, that is, the ring of all continuous real-valued functions on a completely regular frame $L$. The main purpose of this paper is to continue our investigation begun in \cite{a} of extending ring-theoretic properties in $\mathcal{R}L$ to the context of completely regular frames by replacing the ring $\mathcal{R}L$ with the ring $\mathcal{C}_{c}(L)$ to the context of zero-dimensional frames. We show that a frame $L$ is a $CP$-frame if and only if $\mathcal{C}_{c}(L)$ is a regular ring if and only if every ideal of $\mathcal{C}_{c}(L)$ is pure if and only if $\mathcal{C}_c(L)$ is an Artin-Rees ring if and only if every ideal of $\mathcal{C}_c(L)$ with the Artin-Rees property is an Artin-Rees ideal if and only if the factor ring $\mathcal{C}_{c}(L)/\langle\alpha\rangle$ is an Artin-Rees ring for any $\alpha\in\mathcal{C}_{c}(L)$ if and only if every minimal prime ideal of $\mathcal{C}_c(L)$ is an Artin-Rees ideal.Keywords: frame, CP-frame, P-frame, Artin-Rees property, regular ring
-
Let $mathcal{R}_c( L)$ be the pointfree version of $C_c(X)$, the subring of $C(X)$ whose elements have countable image. We shall call a frame $L $ a $CP$-frame if thering $mathcal{R}_c( L)$ is regular. % The main aim of this paper is to introduce $CP$-frames, that is $mathcal{R}_c( L)$ is a regular ring. We give some We give some characterizations of $CP$-frames and we show that $L$ is a $CP$-frame if and only if each prime ideal of $mathcal{R}_c ( L)$ is an intersection of maximal ideals if and only if every ideal of $mathcal{R}_c ( L)$ is a $z_c$-ideal. In particular, we prove that any $P$-frame is a $CP$-frame but not conversely, in general. In addition, we study some results about $CP$-frames like the relation between a $CP$-frame $L$ and ideals of closed quotients of $L$. Next, we characterize $CP$-frames as precisely those $L$ for which every prime ideal in the ring $mathcal{R}_c ( L)$ is a $z_c$-ideal. Finally, we show that this characterization still holds if prime ideals are replaced by essential ideals, radical ideals, convex ideals, or absolutely convex ideals.Keywords: P-frame, CP-frame, regular ring, z-ideal, z-good ring
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.