به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

fractional programming

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه fractional programming در نشریات گروه علوم پایه
  • Farid Pourofoghi *, Davood Darvishi Salokolaei
    Fractional programming is a significant nonlinear planning tool within operation research‎. ‎It finds applications in diverse domains such as resource allocation‎, ‎transportation‎, ‎production programming‎, ‎performance evaluation‎, ‎and finance‎. ‎In practical scenarios‎, ‎uncertainties often make it challenging to determine precise coefficients for mathematical models‎. ‎Consequently‎, ‎utilizing indefinite coefficients instead of definite ones is recommended in such cases‎. ‎Grey systems theory‎, ‎along with probability theory‎, ‎randomness‎, ‎fuzzy logic‎, ‎and rough sets‎, ‎is an approach that addresses uncertainty‎. ‎In this study‎, ‎we address the problem of linear fractional programming with grey coefficients in the objective function‎. ‎To tackle this problem‎, ‎a novel approach based on the variable change technique proposed by Charnes and Cooper‎, ‎along with the convex combination of intervals‎, ‎is employed‎. ‎The article presents an algorithm that determines the solution to the grey fractional programming problem using grey numbers‎, ‎thus capturing the uncertainty inherent in the objective function‎. ‎To demonstrate the effectiveness of the proposed method‎, ‎an example is solved using the suggested approach‎. ‎The result is compared with solutions obtained using the whitening method‎, ‎employing Hu and Wong's technique and the Center and Greyness Degree Ranking method‎. ‎The comparison confirms the superiority of the proposed method over the whitening method‎, ‎thus suggesting adopting the grey system approach in such situations‎.
    Keywords: Uncertainty‎, ‎Optimization‎, ‎Fractional Programming‎, ‎Grey System‎, ‎Grey Interval Numbers
  • Salim Bavandi *, Seyed Hadi Nasseri
    This paper seeks to address the multi-commodity flow problem in uncertainty conditions, in which the objective function of the problem is of fractional type. The cost coefficients and capacities of the problem are uncertain. The purpose of using uncertainty theory is to deal with unknown factors in the uncertain network. After stating the optimality conditions, the problem is transformed into a certain fractional multi-commodity flow problem by applying the uncertain chance-constrained programming approach. Then, the variable transformation approach is used to transform the nonlinear objective function to its linear form. Finally, two numerical examples are evaluated to verify the efficiency of the proposed formulation.
    Keywords: Fractional programming, Uncertainty theory, Belief degree, Multi-commodity flow problem, Chance-constrained programming
  • ژاله شیرین نژاد، منصور سراج*، سارا شکراللهی، فاطمه کیانی

     این مقاله روشی برای رسیدن به جواب بهین سراسری مسایل برنامه ریزی چند هدفه ی کسری هندسی (سیگنومیال) با متغیر صحیح آمیخته پیشنهاد می دهد . دراین مقاله نخست یک مسیله ی برنامه ریزی چندهدفه ی کسری هندسی (سیگنومیال) به وسیله ی یک راهبرد جدید وآسان به یک مسیله ی غیر کسری تبدیل می شودو برای رسیدن به جواب سراسری ازیک تبدیل ریلکس محدب استفاده می کنیم. سپس برای رسیدن به جواب صحیح بهین توافقی اهداف مسیله تکنیک های مرسوم برنامه ریزی فازی و نیزالگوریتم شاخه و کران غیر خطی را بکار می گیریم .علاوه براین برای یافتن جواب صحیح و سراسری با کوچکترین فاصله ازجواب مسیله ی اولیه از الگوریتم شاخه و کران فضایی استفاده می کنیم.در پایان برای نشان دادن درستی و کارایی راهبرد پیشنهادی دو مثال عددی ذکر شده است.

    کلید واژگان: برنامه ریزی چند هدفه، برنامه ریزی هندسی‚ برنامه ریزی کسری، برنامه ریزی عدد صحیح، الگوریتم شاخه و کران فضایی
    Zh. Shirinnejad, M. Saraj *, S. Shokrolahi, F. Kiany

    This study proposes a method for solving mixed integer multi-objective fractional signomial geometric programming (MIMOFSGP) problems. A few methods have been applied in the recent past to convert a fractional signomial objective function into a non-fractional signomial objective function to find the optimal solution by use of some common mathematical programming techniques. In this paper, at first a multi-objective fractional signomial programming is converted into a non-fractional multi-objective signomial programming problem by a new convenient reformulation strategy. A convex relaxation is used to reach global solution and then fuzzy programming technique is applied to find the optimal compromise solution. A mixed integer compromise optimal solution of the convex programming problem can finally be found by use of nonlinear branch and bound algorithm. Then 0n using the Spacial branch and bound algorithm, we find a solution that has the shortest distance from the solution of original problem. Finally two illustrative examples are included to demonstrate the correctness and efficiency of the proposed strategy and compare the results with the other solutions obtained by the other methods.

    Keywords: Multi-objective programming, geometric programming, fractional programming, Mixed integer programming, Spatial branch, bound algorithm
  • این مقاله یک روند حل مناسب برای مسئله برنامه نویسی کسری خطی چند مرحلهای چند منظوره کاملا طبیعی (FRMMFP) ارایه میدهد. ابتدا، توسیعی از روش فاصله برای مقابله با ناهمواری مسئله بیان شده ارایه میشود. سپس، یک تکنیک فاصله برای خطی سازی اهداف کسری پیشنهاد شده است. سرانجام، یک اصالح از رویکرد فازی در محیط کاملا طبیعی برای حل مدل خطی ارایه میشود. برای درک روند حل روش پیشنهادی، یک مثال ارایه شده است.

    E. Fathy*

    This paper presents a suitable solution procedure to solve the fully rough multi-objective multi-level linear fractional programming (FRMMFP) problem. First, an extension of interval method is presented to deal with roughness of the stated problem. Then, an iterative technique is proposed for linearization of fractional objectives. Finally, a modification of fuzzy approach is provided in the environment of the fully rough to solve the linear model. An example is provided for understanding the solution procedure of the proposed method.

    Keywords: Fully rough programming, multi-level programming, multi-objective programming, fractional programming, fuzzy approach
  • Maryam Abareshi*

    We propose a maximum probability model to estimate the origin-destination trip matrix in the networks, where the observed traffic counts of links and the target origin-destination trip demands are independent discrete random variables with known probabilities. The problem is formulated by using the least squares approach in which the objective is to maximize the probability that the sum of squared errors between the estimated values and the observed (target) ones does not exceed a pre-specified threshold. An enumeration so lution approach is proposed to solve the problem in small-sized networks, while a normal approximation based on the central limit theorem is applied in large-sized networks to transform the problem into a deterministic nonlin ear fractional model. Some numerical examples are provided to illustrate the efficiency of the proposed method.

    Keywords: Transportation, Origin-destination trip matrix, Least squares approach, Probabilistic traffic counts, Fractional programming
  • Sapan Das *, Seyyed Ahamad Edalatpanah

    Recently, Srinivasan [On solving fuzzy linear fractional programming inmaterial aspects, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2019.04.209] proposed a method to solve fractional linear programmingproblem under fuzzy environment based on ranking and decompositionmethods. Srinivasan also claimed that the proposed method solved fractionallinear programming problem with inequality and equality constraints. In thisnote, we point out that the paper entitled above suffers from certainmathematical mistakes for solving these problems. Hence, the mentionedmethod and example are not valid. Further the exact method is stated and solvedthe problem.

    Keywords: Fractional programming, Fuzzy linear programming, Triangular Fuzzy Numbers
  • M. Saraj*, A. Sadeghi, N. Mahdavi

    We consider a fractional program with both linear and quadratic equation in numerator and denominator  having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a  second order cone programming (SOCP)  problem.
     For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The problem is solved with SDO relaxation and the obtained results are compared with the interior point method (IPM), a sequential quadratic programming (SQP) approach, an active set strategy and a genetic algorithm. It is observed that the SDO relaxation method is much more accurate and faster than the other methods. Finally,a few numerical examples are worked through to demonstrate the applicability of the procedure.

    Keywords: Fractional Programming, Second Order Cone, SDP Relaxation
  • عباس مهربانی*، حبیبه صادقی
    برنامه ریزی دو سطحی، مدلی برای مسایل بهینه سازی سلسله مراتبی است که دو تصمیم گیرنده با توابع هدف، متغیر ها و قید های متفاوتی وجود دارد. آلوز و همکارانش در [1]، روشی برای محاسبه مرز کارای مساله دو سطحی خطی با دو تابع هدف در سطح بالا و یک تابع هدف در سطح پایین ارائه دادند. در این مقاله ما روش آنها را برای حالتی که بیش از دو تابع هدف در هر دو سطح وجود دارد، تعمیم داده و با بهره گیری از تغییر متغیر مناسب، روش جدیدی برای محاسبه مرز کارای مساله دو سطحی خطی با توابع هدف کسری در سطح بالا ارائه می دهیم. نهایتا کارآیی روش های پیشنهادی را با حل چند مثال عددی و مقایسه نتایج آنها با دیگر روش ها نشان می دهیم.
    کلید واژگان: برنامه ریزی دو سطحی، برنامه ریزی چند هدفه، مرز کارا، برنامه ریزی صحیح، آمیخته، برنامه ریزی کسری
    Abbas Mehrabani*, Habibe Sadeghi
    Bilevel programming is the model for hierarchical optimization problems in which there are two decision makers that have different objective functions, variables and constraints. Alves et al in[1], proposed a method for computing the Pareto frontier of bilevel linear problem with biobjective at the upper level and a single objective function at the lower level. In this paper, we extend their method for the situation in which there exists more than two objective function at both levels, and then by using a suitable exchange variable, we proposed a new method for computing the Pareto frontier of bilevel linear problem with fractional multi-objective at the upper level. Finally we will show the efficiency of the propsed approaches by solving a few numerical examples and comparing the results with other methods.
    Keywords: Bilevel programming, Multi objective programming, Pareto frontier, mixed, integer programming, Fractional programming
  • M. Saraj, N. Safaei
    In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent to fractional objective functions. Then on using the Kuhn-Tucker optimality condition of the lower level problem, we transform the linear bilevel programming problem into a corresponding single level programming. The complementary and slackness condition of the lower level problem is appended to the upper level objective with a penalty, that can be reduce to a single objective function. In the other words, suitable transformations can be applied to formulate FBLP problems. Finally a numerical example is given to illustrate the complexity of the procedure to the solution.
    Keywords: Bi, level programming, Fractional programming, Taylor Series, Kuhn, Tucker conditions, Goal programming, Penalty function
  • Mansour Saraj, Nima Safaei
    This paper presents a Taylor series approach for solving linear fractional de- centralized bi-level multi-objective decision-making (LFDBL-MODM) problems with a single decision maker at the upper level and multiple decision makers at the lower level. In the proposed approach, the membership functions associated with each objective(s) of the level(s) of LFDBL-MODM are transformed by using a Taylor series and then they are unified. On using the Kuhn-Tucker conditions, the problem is finally reduced to a single objective. Numerical example is given in order to illustrate the efficiency and superiority of the proposed approach.
    Keywords: Bilevel programming, Fractional programming, Fuzzy Programming, Kuhn, Tucker conditions, Taylor series
نمایش نتایج بیشتر...
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال