majorization
در نشریات گروه ریاضی-
In this note, we present an equivalent condition for linear preservers of group majorization induced by closed subgroup $G$ of $O(\mathbb{R}^n)$. Moreover, a new concept of majorization is defined on $\mathbb{R}^3$ as acu-majorization and this is extended for $3 \times m$ matrices. Then we characterize all its linear preservers on $\mathbb{R}^3$ and $M_{3,m}$.Keywords: Majorization, Group Majorization, Circulant Majorization, Linear Preservers
-
نگهدارنده های خطی مهتری توسط آندو در مقاله زیر مشخص شدند [Linear Algebra Appl. 118 (1989) 163-248].در این مقاله، یک راهکار ساده برای اثبات قضیه آندو ارایه خواهیم کرد. با استفاده از این روش، یک شرط معادل برای نمایش ماتریسی نگهدارنده های خطی مهتری گروهی روی ماتریس ها بیان می کنیم. علاوه بر این، مهتری انعکاسی را معرفی و نگهدارنده های خطی آن را مشخص خواهیم کرد.کلید واژگان: مهتری، مهتری گروهی، نگهدارنده های خطی، ماتریس های تصادفی مضاعف، جایگشت هاT. Ando characterized linear preservers of majorization in [Linear Algebra Appl. 118 (1989) 163-248]. In this note, we present a method to state a simple proof of Ando's theorem. By using this method, we state an equivalent condition for matrix representations of linear preservers of $G$-majorization on matrices, where $G$ is a finite subgroup of orthogonal group $O(\mathbb{R}^n)$.Moreover, we introduce reflective majorization and characterize all its linear preservers.Keywords: Majorization, Group majorization, Linear preservers, Doubly stochastic matrices, Permutation
-
A toeplitz matrix or diagonal-constant matrix is a matrix in which each descending diagonal from left to right is constant. A matrix $R$ is called integral row stochastic, if each row has exactly a nonzero entry, $+1$, and other entries are zero. In this paper, we present $L$-rays of integral row stochastic toeplitz matrices, and we provide an algorithm for constructing these matrices.Keywords: Majorization, Integral row stochastic, Toeplitz matrices
-
ماتریس مربعی و حقیقی $A$ یک ماتریس زیر تصادفی سطری تعمیم یافته است هرگاه مجموع قدرمطلق درایه های هر سطر آن از یک بیشتر نباشد. برای دوبردار سطری (ستونی) $x$ و $y$، گوییم $y$ $B$-مهتر راست (چپ) $x$ است هرگاه ماتریس زیر تصادفی سطری تعمیم یافته $A$ موجود باشد که $x=yA$ ($x=Ay$). ما دراین مقاله برای هر بردار سطری $y$ (ستونی) همه بردارهایی مانند $x$ که $y$ $B$-مهتر راست (چپ) آنهاست را پیدا کرده ایم و نشان داده ایم که رابطه هم ارزی که از $B$-مهتری چپ بدست می آید معادل با نرم بینهایت و رابطه هم ارزی که از $B$-مهتری راست بدست می آید معادل با نرم یک در فضای برداری $n$-بعدی می باشد. همچنین نشان داده ایم تحت شرایطی $B$-مهتری راست معادل با مهتری راست می باشد و همچنین شرایطی را پیدا کرده ایم که تحت این شرایط $B$-مهتری چپ معادل با مهتری چپ می باشد.کلید واژگان: مهتری، B-مهتری، ماتریس زیرتصادفی سطری، ماتریس زیرتصادفی سطری تعمیم یافتهThe square and real matricx $A$ is called a generalized row substochastic matrix, if the sum of the absolute values of the entries in each row is less than or equal to one.Let $x,y\in \mathbb{R}^n$. We say that $x$ is right $B$-majorized (resp. left $B$-majorized) by $y$, denoted by $x \prec _{rB} y$ ($x \prec _{lB} y$), if there exists a substochastic matrix $D$, such that $x=yD$ (resp. $x=Dy$). In this article, we have found all the vectors such as $x$ that $x$ is right $B$-majorized (resp. left $B$-majorized) by $y$, for all row vector $y$ (resp. column vector). Also, we show $x \sim _{lB} y$ if and only if $\Vert x\Vert_\infty =\Vert y\Vert_\infty$ and prove $x \sim _{rB} y$ if and only if $\Vert x\Vert_1 =\Vert y\Vert_1$.We have also created conditions in which the left $B$-majorization is equivalent to the left majorization, and created conditions in which the right $B$-majorization is equivalent to the right majorization.Keywords: Majorization, B-majorization, row substochastic matrix, generalized row substochastic matrix
-
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 2, Summer-Autumn 2022, PP 1105 -1115
Considering two special families of regular functions in an open unit disk based on quasi-subordination, we present sharp bounds for initial coefficient estimates and also determine the classical functional of Fekete-Szegö of functions in these families. Further, we discuss subordination and majorization results for the associated families. Few known and several new consequences are established.
Keywords: Regular functions, Fekete-Szegö functional, quasi-subordination, majorization, subordination -
For any simple graph $G$, the signless Laplacian matrix of $G$ is defined as $D(G)+A(G)$, where $D(G)$ and $A(G)$ are the diagonal matrix of vertex degrees and the adjacency matrix of $G$, respectively. %Let $chi(G)$ be the chromatic number of $G$ Let $q(G)$ be the signless Laplacian spectral radius of $G$ (the largest eigenvalue of the signless Laplacian matrix of $G$). In this paper we find some relations between the chromatic number and the signless Laplacian spectral radius of graphs. In particular, we characterize all graphs $G$ of order $n$ with odd chromatic number $chi$ such that $q(G)=2nBig(1-frac{1}{chi}Big)$. Finally we show that if $G$ is a graph of order $n$ and with chromatic number $chi$, then under certain conditions, $q(G)<2nBig(1-frac{1}{chi}Big)-frac{2}{n}$. This result improves some previous similar results.
* Formulas are not displayed correctly.
Keywords: chromatic number, Majorization, Signless Laplacian matrix, Signless Laplacian spectral radius -
A nonnegative real matrix is called row stochastic if sum of all entries in each row is one. For vectors $x, y \in R_n$, it is said that $x$ is left-right matrix majorized by $y$ and write $x\prec_{rl} y$ if for some row stochastic matrices $A,B$; $x=yA$ and $x^t=By^t$. A linear operator $T : \mathbb{R}_n\longrightarrow \mathbb{R}_n$ is said to be a linear preserver of a given relation $\mathcal{R}$ if $x\mathcal{R}y$ implies that $T(x)\mathcal{R}T(y)$. In this parer we characterize the linear preservers of $\prec_{rl}$ from $\mathbb{R}_n$ to $\mathbb{R}_n$. In fact, we show that the linear preservers of $\prec_{rl}$ from $ mathbb{R}_n$ to $\mathbb{R}_n$ are the same as the linear preservers of $\prec_{m}$ from $\mathbb{R}_n$ to $\mathbb{R}_n$ for $n\leq 3$; but for $n\geq 4$; they are not the same.
Keywords: Linear preserver, Majorization, right majorization, left majorization, right-left majorization -
Let $x, yin mathbb{R}^n.$ We use the notation $xprec_w y$ when $x$ is weakly majorized by $y$. We say that $xprec_w y$ is decomposable at $k$ $(1leq k < n)$ if $xprec_w y$ has a coincidence at $k$ and $y_{k}neq y_{k+1}$. Corresponding to this majorization we have a doubly substochastic matrix $P$. The paper presents $xprec_w y$ is decomposable at some $k$ $(1leq k<n)$ if and only if $P$ is of the form $Doplus Q$ where $D$ and $Q$ are doubly stochastic and doubly substochastic matrices, respectively. Also, we write some algorithms to obtain $x$ from $y$ when $xprec_w y$.Keywords: Decomposability, Doubly substochastic matrix, Weak majorization, Majorization
-
In this paper, we consider the class of 4-convex functions and we obtain some inequalities related to 4-convex functions. Moreover, for k ≤ n, we present a majorization ≺k on Rn and we give some equivalent conditions for ≺4 on R4.
Keywords: Majorization, 4-convex function, inequalities, divided difference -
Let MnMn be the set of all nn-by-nn real matrices, and let RnRn be the set of all nn-by-11 real (column) vectors. An nn-by-nn matrix R=[rij]R=[rij] with nonnegative entries is called row stochastic, if ∑nk=1rik∑k=1nrik is equal to 1 for all ii, (1≤i≤n)(1≤i≤n). In fact, Re=eRe=e, where e=(1,…,1)t∈Rne=(1,…,1)t∈Rn. A matrix R∈MnR∈Mn is called integral row stochastic, if each row has exactly one nonzero entry, +1+1, and other entries are zero. In the present paper, we provide an algorithm for constructing integral row stochastic matrices, and also we show the relationship between this algorithm and majorization theory.
Keywords: Eigenvalue, Majorization, Integral row stochastic -
Assume we have $k$ immediate (due)-annuities with different interest rates. Let ${bf i}=(i_1,i_2,...,i_k)$ and ${bf i^*}=(i^*_1,i^*_2,...,i^*_k)$ be two vectors of interest rates such that ${bf i^*}$ is majorized by ${bf i}$. It's shown that sum of present and accumulated value of annuities-immediate with interest rate ${bf i}$ is grater than sum of present value of annuities-immediate with interest rate ${bf i^*}$. We also prove the similar results for annuities-due.
Keywords: Arithmetic mean, Majorization, Schur-convex function -
In this paper we study the concept of Latin-majorizati-\\on. Geometrically this concept is different from other kinds of majorization in some aspects. Since the set of all xs Latin-majorized by a fixed y is not convex, but, consists of union of finitely many convex sets. Next, we hint to linear preservers of Latin-majorization on Rn and Mn,m.Keywords: Doubly stochastic matrix, Latin, majorization, Latin square, Linear preserver
-
Suppose $textbf{M}_{n}$ is the vector space of all $n$-by-$n$ real matrices, and let $mathbb{R}^{n}$ be the set of all $n$-by-$1$ real vectors. A matrix $Rin textbf{M}_{n}$ is said to be $textit{row substochastic}$ if it has nonnegative entries and each row sum is at most $1$. For $x$, $y in mathbb{R}^{n}$, it is said that $x$ is $textit{sut-majorized}$ by $y$ (denoted by $ xprec_{sut} y$) if there exists an $n$-by-$n$ upper triangular row substochastic matrix $R$ such that $x=Ry$. In this note, we characterize the linear functions $T$ : $mathbb{R}^n$ $rightarrow$ $mathbb{R}^n$ preserving (resp. strongly preserving) $prec_{sut}$ with additional condition $Te_{1}neq 0$ (resp. no additional conditions).Keywords: (Strong) linear preserver, Row substochastic matrix, Sut, Majorization
-
Let Mn;m be the set of n-by-m matrices with entries in the field of real numbers. A matrix R in Mn = Mn;n is a generalized row substochastic matrix (g-row substochastic, for short) if Re e, where e = (1; 1; : : : ; 1)t. For X; Y 2 Mn;m, X is said to be sgut-majorized by Y (denoted by X sgut Y ) if there exists an n-by-n upper triangular g-row substochastic matrix R such that X = RY . This paper characterizes all linear preservers and strong linear preservers of sgut on Rn and Mn;m respectively.Keywords: Linear preserver, strong linear preserver, g, row substochastic matrices, sgut, majorization
-
Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T: Mn,m ---> Mn,m preserving (or strongly preserving) g-row or g-column majorization will be characterized.Keywords: Linear preserver, g, row stochastic matrices, rgw, majorization, lgw, majorization
-
Let $mathbf{c}_0$ be the real vector space of all real sequences which converge to zero. For every $x,yin mathbf{c}_0$, it is said that $y$ is block diagonal majorized by $x$ (written $yprec_b x$) if there exists a block diagonal row stochastic matrix $R$ such that $y=Rx$. In this paper we find the possible structure of linear functions $T:mathbf{c}_0rightarrow mathbf{c}_0$ preserving $prec_b$.Keywords: Block diagonal matrices, Majorization, Stochastic matrices, Linear preservers
-
اولین و دومین اندیس های زاگرب ضربی یک گراف همبند با مجموعه رئوس و مجموعه یال های به صورت و، به ترتیب تعریف می شوند، جاییکه درجه راس را نمایش می دهد. در این مقاله رویکردی ساده را برای مرتب کردن این اندیس ها برای گراف های همبند از مرتبه ای مشخص را ارایه می کنیم. علاوه بر این به عنوان کاربردی از این رویکرد ساده، مرتب سازی های شناخته شده اولین و دومین اندیس زاگرب ضربی برای برخی رده های گراف های همبند توسیع داده شده است.
The first ($Pi_1$) and the second $(Pi_2$) multiplicative Zagreb indices of a connected graph $G$, with vertex set $V(G)$ and edge set $E(G)$, are defined as $Pi_1(G) = prod_{u in V(G)} {d_u}^2$ and $Pi_2(G) = prod_{uv in E(G)} {d_u}d_{v}$, respectively, where ${d_u}$ denotes the degree of the vertex $u$. In this paper we present a simple approach to order these indices for connected graphs on the same number of vertices. Moreover, as an application of this simple approach, we extend the known ordering of the first and the second multiplicative Zagreb indices for some classes of connected graphs.Keywords: multiplicative Zagreb index, majorization, unicyclic graphs, bicyclic graphs
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.