به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

np-complete

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه np-complete در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه np-complete در مقالات مجلات علمی
  • Abolfazl Poureidi *, Jafar Fathali
    Given a graph $G=(V,E)$,  a  function  $f:V\to \{0,1,2,3,4\}$ is a triple Roman  dominating function (TRDF)  of $G$, for each vertex $v\in V$,  (i) if $f (v ) = 0 $, then  $v$ must have either one neighbour in $V_4$, or either two neighbours in $V_2 \cup  V_3$ (one neighbour in $V_3$) or either three neighbours in $V_2 $, (ii) if $f (v ) = 1 $, then $v$ must have either one neighbour in  $V_3 \cup  V_4$  or either two neighbours in $V_2 $, and if $f (v ) = 2 $, then $v$ must have one neighbour in $V_2 \cup  V_3\cup  V_4$. The triple Roman  domination number of $G$ is the  minimum weight of an TRDF  $f$  of $G$, where the weight of $f$ is $\sum_{v\in V}f(v)$.  The triple  Roman  domination problem is to compute the  triple Roman  domination number of a given graph.  In this paper, we study the triple  Roman  domination problem. We show that   the problem is NP-complete for  the  star convex bipartite  and the   comb convex bipartite graphs and is APX-complete for graphs of degree at~most~4. We propose a linear-time algorithm for computing  the triple Roman  domination number of proper interval graphs.  We also   give an $( 2 H(\Delta(G)+1) -1  )$-approximation algorithm  for solving the problem  for any graph $G$,  where   $  \Delta(G)$ is the maximum degree of $G$ and $H(d)$ denotes the first $d$ terms of the harmonic  series. In addition, we prove  that  for any $\varepsilon>0$  there is no  $(1/4-\varepsilon)\ln|V|$-approximation  polynomial-time   algorithm for solving  the problem on bipartite and split  graphs, unless NP $\subseteq$ DTIME $(|V|^{O(\log\log|V |)})$.
    Keywords: Triple Roman domination, Approximation algorithm, NP-complete, Proper interval graph, APX-complete
  • Manjay Kumar *, Venkata Subba Reddy P
    For a simple, undirected graph $G(V,E)$, a function $h : V(G) rightarrow lbrace 0, 1, 2rbrace$ such that each edge $ (u,v)$ of $G$ is either incident with a vertex with weight at least one or there exists a vertex $w$ such that either $(u,w) in E(G)$ or  $(v,w) in E(G)$ and $h(w) = 2$, is called a vertex-edge Roman dominating function (ve-RDF) of $G$. For a graph $G$, the smallest possible weight of a ve-RDF of $G$ which is denoted by $gamma_{veR}(G)$, is known as the textit{vertex-edge Roman domination number} of $G$. The problem of determining  $gamma_{veR}(G)$ of a graph $G$ is called minimum vertex-edge Roman domination problem (MVERDP). In this article, we show that the problem of deciding if $G$ has a ve-RDF of weight at most $l$ for star convex bipartite graphs, comb convex bipartite graphs, chordal graphs and planar graphs is NP-complete. On the positive side, we show that MVERDP is linear time solvable for threshold graphs, chain graphs and bounded tree-width graphs. On the approximation point of view, a 2-approximation algorithm for MVERDP is presented. It is also shown that vertex cover and vertex-edge Roman domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming  formulation for MVERDP is presented.
    Keywords: Vertex-edge Roman-domination, graph classes, NP-complete, Vertex cover, Integer linear programming
  • Pavan Kumar Jakkepalli *, Subramanian Arumugam, Himanshu Khandelwal, Venkata Subba Reddy P.
    A dominating set $ D $ of a graph $ G=(V,E) $ is called a certified dominating set of $ G $ if $vert N(v) cap (V setminus D)vert$ is either 0 or at least 2 for all $ v in D$. The certified domination number $gamma_{cer}(G) $ is the minimum cardinality of a certified dominating set of $ G $. In this paper, we prove that the decision problem corresponding to $gamma_{cer}(G) $ is NP-complete for split graphs, star convex bipartite graphs, comb convex bipartite graphs and planar graphs. We also prove that it is linear time solvable for chain graphs, threshold graphs and bounded tree-width graphs.
    Keywords: Certified domination, NP-complete, Tree-convex bipartite graphs
  • P. Chakradhar *, P. Venkata Subba Reddy
    Let $G$ be a simple, undirected graph. In this paper, we initiate the study of independent Roman ${3}$-domination. A function $g : V(G) rightarrow lbrace 0, 1, 2, 3 rbrace$ having the property that $sum_{v in N_G(u)}^{} g(v) geq 3$, if $g(u) = 0$, and $sum_{v in N_G(u)}^{} g(v) geq 2$, if $g(u) = 1$ for any vertex $u in V(G)$, where $N_G(u)$ is the set of vertices adjacent to $u$ in $G$, and no two vertices assigned positive values are adjacent is called an textit{ independent Roman ${3}$-dominating function} (IR3DF) of $G$. The weight of an IR3DF $g$ is the sum $g(V) = sum_{v in V}g(v)$. Given a graph $G$ and a positive integer $k$, the independent Roman ${3}$-domination problem (IR3DP) is to check whether $G$ has an IR3DF of weight at most $k$. We investigate the complexity of IR3DP in bipartite and chordal graphs. The minimum independent Roman $lbrace 3 rbrace$-domination problem (MIR3DP) is to find an IR3DF of minimum weight in the input graph. We show that MIR3DP is linear time solvable for bounded tree-width graphs, chain graphs and threshold graphs. We also show that the domination problem and IR3DP are not equivalent in computational complexity aspects. Finally, we present an integer linear programming formulation for MIR3DP.
    Keywords: Roman ‎{3}‎‎-domination, Independent Roman ‎{3}‎‎-domination, NP-complete, APX-hard, Integer Linear Programming
  • Malihe Niksirat*, Seyed Naser Hashemi

    This paper considered the cost constrained vehicle scheduling problem under the constraint that the total number of vehicles is known in advance. Each depot has a different time processing cost. The goal of this problem is to find a feasible minimum cost schedule for vehicles. A mathematical formulation of the problem is developed and the complexity of the problem when there are more than two depots is investigated. It is proved that in this case, the problem is NP-complete. Also, it is showed that there is not any constant ratio approximation algorithm for the problem, i.e., it is in the complexity class APX.

    Keywords: Vehicle scheduling problem, Fixed job scheduling, NP-complete, Approximation algorithm, APX
  • مجید یوسفی خوشبخت
    مساله مسیریابی وسیله نقلیه یکی از مشهورترین مسائل تحقیق در عملیات است که از جایگاه بسیار مهمی در مسائل بهینه سازی ترکیباتی برخوردار است. در این مسئله ناوگانی از وسایل نقلیه با ظرفیت Q از گره ای به نام انبار شروع به حرکت می کنند و بعد از سرویس دهی به مشتریان به آن باز می گردند به شرط آنکه هر کدام از مشتریان را فقط یک بار مورد ملاقات قرار دهند و در هیچ زمانی بیشتر از ظرفیت محدود Q بارگذاری نکنند. هدف کمینه کردن مسیرهای پیموده شده توسط وسایل نقلیه است. این مقاله کاربرد روش رقابت استعماری، را برای حل مساله مسیریابی وسیله نقلیه ارائه می کند. برخلاف روش های دیگر بهینه سازی، این روش از فرآیند اجتماعی-سیاسی جوامع الهام گرفته شده است و از رقابت بین کشورهای استعمارگر و مستعمره برای رسیدن به جواب استفاده می کند. برای آزمایش کارایی الگوریتم، دو دسته مثال استاندارد در نظر گرفته شده و الگوریتم بر روی آن مورد اجرا قرار گرفته است. نتایج محاسباتی روی این مثال ها که دارای اندازه ای از 50 تا 200 می باشند نشان می دهد که الگوریتم پیشنهادی توانسته رقابت خوبی با الگوریتم های مشهور فراابتکاری از نظر کیفیت جواب ها داشته باشد. به علاوه جواب های نزدیک به بهترین جواب های تاکنون بدست آمده برای بیشتر مثال ها بدست آورده شده است.
    کلید واژگان: الگوریتم رقابت استعماری، مسائل  NPتام، مساله مسیریابی وسیله نقلیه
    M. Yousefikhoshbakht
    The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and total distance traversed. This paper presents an application of Imperialist Competitive Algorithm (ICA)) in VRP. Unlike other evolutionary optimization algorithms, ICA is inspired from a socio political process, the competition among imperialists and colonies. Comparison between this method and famous meta-heuristic algorithms shows the effectiveness of the proposed approach. Computational experience with two groups of instances involving from 50 to 200 confirms that proposed algorithm is competitive in compared to the famous meta-heuristic algorithms in terms of the quality of generated solutions. In addition, this algorithm finds closely the best known solutions (BKS) for most of the instances.
    Keywords: Imperialist Competitive Algorithm, NP-Complete, Vehicle Routing Problem
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال