numerical radius
در نشریات گروه ریاضی-
New norm and numerical radius inequalities for operators on Hilbert space are given. Among other inequalities, we prove that if $ A, B \in B(H) $, then \[\Vert A \Vert - \frac{3 \Vert A-B^* \Vert }{2} \leq \omega\left(\left[\begin{array}{cc} 0 & A \\ B & 0 \end{array}\right]\right).\] Moreover, $\omega(AB) \leq \frac{3}{2} \Vert Im(A) \Vert \Vert B \Vert + D_{B}\; \omega(A) $. In particular, if $ A $ is self-adjointable, then $\omega(AB) \leq D_{B} \Vert A \Vert$, where $D_{B}=\underset{\lambda \in \mathbb{C}}{\mathop{\inf}}\,\left\| B-\lambda I \right\|$.
Keywords: Hilbert Space, Norm Inequality, Numerical Radius, Bounded Linear Operator -
In this note, we obtain a reverse version of the Haagerup Theorem. In particular, if A ∈ Mn has a 2 × 2− principal submatrix as 1 α β 1 with β 6= ¯α, then kSAk > 1 where the operator SA : Mn −→ Mn is defined by SA(B) := A ◦ B where ” ◦ ” stands for Schur product
Keywords: s: Inequalities, Schur multiplier operator, spectral norm, numerical radius -
In this paper, several inequalities involving the HilbertSchmidt numerical radius inequalities for 2 × 2 operator matrices operators are established. In particular, we obtain some generalizations and refinements of earlier inequalities. Some upper and lower bounds for the Hilbert-Schmidt numerical radius inequalities for 2 × 2 operator matrices operators is also given.
Keywords: Numerical radius, Hilbert-Schmidt, Operator matrix, Inequality -
International Journal of Mathematical Modelling & Computations, Volume:12 Issue: 3, Summer 2022, PP 173 -181In this paper, we present several numerical radius and norm inequalities for sum of Hilbert space operators. These inequalities improve some earlier related inequalities. For $A,B\in B\left( H \right)$, we prove that\[\omega \left( {{B}^{*}}A \right)\le \sqrt{\frac{1}{2}{{\left\| A \right\|}^{2}}{{\left\| B \right\|}^{2}}+\frac{1}{2}\omega \left( {{\left| B \right|}^{2}}{{\left| A \right|}^{2}} \right)}\le 4\omega \left( A \right)\omega \left( B \right).\]Keywords: Bounded linear operators, numerical radius, operator norm, Inequality
-
We give several inequalities involving numerical radii $\omega \left( \cdot \right)$ and the usual operator norm $\left\| \cdot \right\|$ of Hilbert space operators. These inequalities lead to a considerable improvement in the well-known inequalities ½||T||≤ω(T)≤||T||Keywords: Numerical radius, usual operator norm, inequality, contraction operator
-
In this paper, we introduce some numerical radius inequalities for products of two Hilbert space operators. Some of our inequalities improve well-known ones.
Keywords: Bounded linear operator, Hilbert space, norm inequality, numerical radius -
International Journal of Mathematical Modelling & Computations, Volume:11 Issue: 4, Autumn 2021, P 1
By taking into account that the computation of the numerical radius is an optimization problem, we prove, in this paper, several refinements of the numerical radius inequalities for Hilbert space operators. It is shown, among other inequalities, that if A is a bounded linear operator on a complex Hilbert space, thenω(A)≤½√(|| |A|2+|A*|2||+|| |A| |A*|+|A*| |A| ||),where ω(A), ||A||, and |A| are the numerical radius, the usual operator norm, and the absolute value of A, respectively. This inequality provides a refinement of an earlier numerical radius inequality due to Kittaneh, namely,ω(A)≤½(||A||+||A2||)½.Some related inequalities are also discussed.
Keywords: numerical radius, operator norm, Inequality, positive operator -
We present some new numerical radius inequalities of Hilbert space operators. We improve and generalize some inequalities with re- spect to Specht’s ratio. Let A and B be two positive invertible operators on a Hilbert space H and let X be a bounded operator on H. Then ω((A♮B)X) ≤ 1 2S(√h) ∥X∗BX + A∥, (h > 0, h ̸ = 1) where ∥ · ∥, ω(·), S(·), and ♮ denote the usual operator norm, numeri- cal radius, the Specht’s ratio, and the operator geometric mean, respec- tively.
Keywords: positive operators, normalized positive lin-ear map, numerical radius, Specht’s ratio -
The main purpose of this note is to define an analogues of the numerical radius related to the matricial range. However, we will find relations between the numerical radius and matricial range of an operator. The tone of the paper is mostly expository.
Keywords: Numerical range, matricial range, completely positive mapping, numerical radius -
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follows that begin{equation*} omega^2(A^*B)leq frac{1}{2S(sqrt{h})}Big||A|^{4}+|B|^{4}Big|-displaystyle{inf_{|x|=1}} frac{1}{4S(sqrt{h})}big(biglangle big(A^*A-B^*Bbig) x,xbigranglebig)^2 end{equation*} for some $h>0$, where $|cdot|,,,,omega(cdot)$ and $S(cdot)$ denote the usual operator norm, numerical radius and the Specht's ratio, respectively.Keywords: Positive operators, numerical radius, Specht's ratio, Hermite-Hadamard inequality
-
In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.Keywords: Polynomial numerical hull, numerical range, Numerical radius, Perturbation
-
در این مقاله ابتدا تعریف جدیدی از شعاع عددی برای عملگرهای دارای الحاق بر روی یک فضای هیلبرت مدول ارایه و سپس روابطی بین نرم عملگری با این شعاع عددی جدید معرفی می شود. این نامساوی ها به عنوان توسیعی از نامساوی های مشهور ثابت شده توسط سایر ریاضیدانان برای عملگرهای خطی و کران دار تعریف شده بر روی فضای هیلبرت می باشد.کلید واژگان: عملگرهای خطی و کران دار، نرم عملگری، برد عددی، شعاع عددی، فضای هیلبرت ?-C?^*مدولIn this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.Keywords: Bounded linear operator, Hilbert C^*-module, norm inequality, numerical radius -
For A ∈ M n, the Schur multiplier of A is defined as S A(X) = A ◦ X for all X ∈ M n and the spectral norm of S A can be state as ∥S A∥ = supX,0 ∥A ∥X ◦X ∥ ∥. The other norm on S A can be defined as ∥S A∥ω = supX,0 ω(ω S( AX (X ) )) = supX,0 ωω (A (X ◦X ) ), where ω(A) stands for the numerical radius of A. In this paper, we focus on the relation between the norm of Schur multiplier of product of matrices and the product of norm of those matrices. This relation is proved for Schur product and geometric product and some applications are given. Also we show that there is no such relation for operator product of matrices. Furthermore, for positive definite matrices A and B with ∥S A∥ω ⩽ 1 and ∥S B∥ω ⩽ 1, we show that A♯B = n(I − Z)1/2C(I Z)1/2, for some contraction C and Hermitian contraction Z.Keywords: Schur multiplier, Schur product, Geometric product, Positive semidenite matrix, Numerical radius
-
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine when either of them becomes an equality.Keywords: Numerical radius, block shift, minimum modulus
-
In this paper we will generalize a singular value inequality that was proved before. In particular we obtain an inequality for numerical radius as follows: begin{equation*} 2 sqrt{t (1-t)} omega(t A^{nu}B^{1-nu}+(1-t)A^{1-nu}B^{nu}) leq omega(t A + (1- t) B), end{equation*} where, $ A $ and $ B $ are positive semidefinite matrices, $ 0 leq t leq 1 $ and $ 0 leq nu leq frac{3}{2}.$Keywords: Matrix monotone functions, Numerical radius, Singular values, Unitarily invariant norms
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.