numerical solution
در نشریات گروه ریاضی-
The multi-step differential transform method (DTM) adopted from the standard DTM is employed in this case study to solve a model of the transesterification reaction. The DTM is considered in a sequence of time intervals. The accuracy of the proposed method is confirmed by comparing its results with those of the fourth-order RungeKutta (RK4) method. In addition, the experimental results are investigated with the Multi-step DTM to demonstrate the efficiency and effectiveness of these chemical reactions obtained in the laboratory. The present findings confirmed the effectiveness of using the multi-step DTM in validating the chemical models obtained in laboratories.Keywords: Multi-Step DTM, Transesterification Reaction, RK4 Method, Numerical Solution
-
This paper introduces a new computational method for solving linear and non-linear fractional differential equations (FDEs). Our method essentially consists of the combination of orthonormal Bernoulli polynomials and the fractional form of the Picard iteration method. We name this method the fractional Bernoulli-Picard iteration method (FBPIM). Unlike the spectral method, the proposed method does not require solving a set of algebraic equations. We also discuss the convergence of the method. Moreover, some numerical examples are included and compared with previously published results to assess both the accuracy and suitability of the developed technique.Keywords: Caputo Derivative, Picard Iteration Method, Orthonormal Bernoulli Polynomials, Fractional Differential Equations, Numerical Solution
-
The main purpose of this paper is to use the homotopy analytical method in order to solve the linear space-fractional telegraph differential equation. Also, non-standard finite difference method has been used to solve this equation numerically. Next, the concepts of Lie symmetry is established and the symmetries of the equation are calculated. In this article, Matlab software was used for simulation. Numerical results are presented to evaluate the efficiency and usefulness of the proposed method.
Keywords: Lie Symmetry, Numerical Solution, Homotopy, Non-Standard Finite Difference -
An Explicit Method for Numerical Solution of the Equation Governing the Motion of a Particle Under Arbitrary Force FieldsInternational Journal of Mathematical Modelling & Computations, Volume:13 Issue: 3, Summer 2023, P 4
In this paper, an implicit second order integro-differential equation governing unsteady motion of a solid particle submerged in a fluid medium and, affected by an arbitrary force field is solved numerically. It is assumed that the particle Reynolds number is quite small to use the well-known Basset kernel for the history force. The implicitness and singularity of the equation are removed by using a hybrid quadrature rule (HQR) and a generalized quadrature rule (GQR), respectively. A recursive plan is used to reduce the required CPU time. Two schemes along with the associated numerical solution algorithms are presented. It is described how the accuracy of the method can be increased in a systematic way. The results obtained by several examples show the effectiveness of the method.
Keywords: Numerical Solution, Integro-Differential Equation, Particle Motion, Basset History Force, Creeping Flow -
Iranian Journal of Numerical Analysis and Optimization, Volume:14 Issue: 2, Spring 2024, PP 330 -346In the present paper, we precisely conduct a quantum calculus method for the numerical solutions of PDEs. A nonlinear Schrödinger equation is considered. Instead of the known classical discretization methods based on the finite difference scheme, Adomian method, and third modified ver-sions, we consider a discretization scheme leading to subdomains according to q-calculus and provide an approximate solution due to a specific value of the parameter q. Error estimates show that q-calculus may produce effi-cient numerical solutions for PDEs. The q-discretization leads effectively to higher orders of convergence provided with faster algorithms. The numer-ical tests are applied to both propagation and interaction of soliton-type solutions.Keywords: NLS equation, Quantum calculus, Numerical Solution, Error estimates
-
Our research is about the Sturm-Liouville equation which contains conformable fractional derivatives of order $\alpha \in (0,1]$ in lieu of the ordinary derivatives. First, we present the eigenvalues, eigenfunctions, and nodal points, and the properties of nodal points are used for the reconstruction of an integral equation. Then, the Bernstein technique was utilized to solve the inverse problem, and the approximation of solving this problem was calculated. Finally, the numerical examples were introduced to explain the results. Moreover, the analogy of this technique is shown in a numerical example with the Chebyshev interpolation technique .Keywords: Inverse Problem, Conformable Fractional, Nodal Points, Bernstein Technique, Numerical Solution
-
International Journal Of Nonlinear Analysis And Applications, Volume:15 Issue: 1, Jan 2024, PP 241 -249Our work proposes a new numerical method for finding the solution of three-dimensional Volterra-Hammerstein integral equations by using three-dimensional hybrid block-pulse functions and Legendre polynomials. Our integral equation is converted to a system of nonlinear equations. An error bound for the suggested method is established. Eventually, some numerical examples illustrate that our method is feasible and efficient.Keywords: three-dimensional Volterra-Hammerstein integral equations, hybrid functions, Legendre Polynomials, collocation points, Numerical Solution
-
در این مقاله یک روش تکراری برای به دست آوردن جواب های عددی معادلات دیفرانسیل کسری جزیی %\LTRfootnote{Fractional partial differential equations}% معرفی شده است. این روش براساس ترکیب روش تبدیل دیفرانسیل \LTRfootnote{Differential transform method} با روش های چند گامی خطی کسری \LTRfootnote{Fractional linear multi-step methods} ،(FLMM) بنا شده است. روش پیشنهاد شده دارای هزینه محاسباتی بسیار کم است که با استفاده از آن معادلات دیفرانسیل کسری جزیی به یک دستگاه از معادلات دیفرانسیل معمولی تبدیل می شوند. سپس معادلات حاصل با استفاده از اعمال روش های چند گامی خطی کسری همانند اویلر کسری با دقت بالا حل می شوند. سری جواب به دست آمده در روش تبدیل دیفرانسیل در ناحیه های بزرگ سرعت همگرایی کندی دارد. در این مقاله با ترکیب روش یادشده با روش های چند گامی خطی کسری این نقیصه برطرف می شود. نتایج عددی نشان می دهند که جواب های به دست آمده با جواب دقیق معادله دیفرانسیل کسری مطابقت خوبی دارند. نتایج حاصل شده پایداری و دقت اثبات شده روش را تایید می کنند.
کلید واژگان: معادلات دیفراسیل کسری، جواب عددی، پایداری، روش تبدیل دیفرانسیل، روش چند گامی خطی کسریIn this paper, an iterative method for obtaining the numerical solutions of fractional partialdifferential equations (FPDEs) is introduced. This method is based on the combination of the differentialtransformation method (DTM) with fractional linear multistep methods (FLMM). The proposed methodhas a very low computational cost, with the help of which partial fractional differential equations areconverted into a system of ordinary differential equations. Then the resulting equations are solved with highaccuracy by applying fractional linear multi-step methods such as fractional Euler The series of solutionsobtained in the differential transformation method has a slow convergence speed in large regions. In thisstudy, by combining the mentioned method with linear multi-step methods, this shortcoming is solved.Numerical results show that the obtained solutions. They are in good agreement with the exact solution ofthe fractional differential equation. The obtained results confirm the proven stability and accuracy of themethod.
Keywords: Fractional Differential Equation, Numerical solution, Stability, Differtential Transform method, Fractional linear multi-step method -
In 2010, Alvarez et al. proposed an algorithm for morphological snakes that could detect objects whose edges consist of convex sets and polygonal edges. However, the algorithm may not detect the boundary well if the edges of an object contain a convex set or if there are several separated objects in an image. In this paper, we present two optimal sub-algorithms that are modifications to the Alvarez et al. algorithm. Our algorithms provide optimal edge detection for images and we present examples to demonstrate their effectiveness.Keywords: Morphological curves, Partial differential equation, Numerical solution, Optimization
-
In this article, we use the Haar wavelets (HWs) method to numerically solve the nonlinear Drinfel’d–Sokolov (DS) system. For this purpose, we use an approximation of functions with the help of HWs, and we approximate spatial derivatives using this method. In this regard, to linearize the nonlinear terms of the equations, we use the quasilinearization technique. At the end, to show the effectiveness and accuracy of the method in solving this system one numerical example is provided.Keywords: Drinfel’d–Sokolov system, Numerical solution, Haar wavelets method, Quasilinearization technique
-
Pricing catastrophe swap as an instrument for insurance companies risk management, has received trivial attention in the previous studies, but in most of them, damage severities caused by the disaster has been considered to be fixed. In this study, through considering jumps for modeling the occurrence of disasters as in Unger [32] and completing it through considering damages caused by natural disasters as stochastic, an integro-differential model was extracted to value catastrophe swap contracts. In determining the swap price changes, the Ito command was followed and to achieve the catastrophic swap model, the generalization of the Black and Scholes modeling method was used. [3]. With regard to the initial and boundary conditions, extracted model does not have an analytical solution; thus, its answer was approximated using the finite difference numerical method and the effect of considering the damage as stochastic on swap value was analyzed. In addition, the model and the extracted numerical solution were separately implemented on the data about the earthquake damage in the United States and Iran. The results showed that prices will experience a regular upward trend until damage growth, damage severities, and occurrence probability of a catastrophe are not so high that the buyer of the swap is forced to pay compensation to the swap’s seller. Of course, the prices will fall sharply as soon as they reach and cross the threshold.Keywords: Catastrophe Swap, Stochastic Damage, Numerical Solution, Earthquake Damage
-
Journal of Computational Algorithms and Numerical Dimensions, Volume:1 Issue: 2, Spring 2022, PP 61 -71In this work, we consider a collocation method for solving the pantograph-type Volterra Hammerstein integral equations based on the first kind Chebyshev polynomials. We use the Lagrange interpolating polynomial to approximate the solution. The convergence of the presented method has been analyzed by over estimating for error. Finally, some illustrative examples are given to test the accuracy of the method. The presented method is compared with the Legendre Tau method.Keywords: Numerical Solution, Collocation method, Pantograph-type, Volterra Hammerstein integral equations, Convergence analysis
-
در این مقاله جواب های تقریبی مدل عفونت HIV سلول های CD4+ T را به دست خواهیم آورد. این مدل مربوط به یک کلاس از سیستم های معادلات دیفرانسیل معمولی غیرخطی است. برای این منظور، تبدیل طبیعی را با روش تجزیه آدومیان برای حل این مدل ترکیب می کنیم. نتایج عددی به دست آمده از روش پیشنهادی با نتایج به دست آمده از سایر روش های قبلی مقایسه می شود. این نتایج نشان می دهند که این روش با سایر روش های قبلی مطابقت دارد.کلید واژگان: مدل عفونت HIV سلول های CD4+ T، سیستم معادلات دیفرانسیل غیرخطی، روش تجزیه طبیعی-آدومیان، حل عددیAnalytical and Numerical Solutions for Nonlinear Equations, Volume:6 Issue: 2, Winter and Spring 2021, PP 293 -301In this paper, we will obtain analytical approximate solutions of the HIV infection model of CD4+ T-cells. This model corresponds to a class of nonlinear ordinary differential equation systems. To this end, we combine the Natural transform with the Adomian decomposition method for solving this model. The numerical results obtained by the suggested method are compared with the results obtained by other previous methods. These results indicate that this method agrees with other previous methods.Keywords: HIV infection of CD4^+ T-cells, Nonlinear system of differential equations, Natural-Adomian decomposition method, Numerical solution
-
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 2, Summer-Autumn 2021, PP 1599 -1609
In this article, two numerical methods based on Touchard and Laguerre polynomials were presented to solve Abel integral (AI) equations. Touchard and Laguerre matrices were utilized to transform Abel integral equations into an algebraic system of linear equations. Solve this system of these equations to obtain Touchard and Laguerre parameters. Four examples are given to demonstrate the presented methods. The solutions were compared with the solutions in the literature.
Keywords: Abel integral equation, Numerical solution, singular Volterra, Touchard polynomials, Laguerre polynomials -
Legendre wavelets technique for special Initial-Value problem for the quarter plain of heat transfer
In this paper we have solved the heat transfer equation by means of the Volterra integral equation and Legendre Wavelets. Since, due to numerical facts, solution of the related partial differential equation is difficult, thus we have applied integral equation model. The integral equation model of this system is a Volterra type of the first kind. These systems are ill posed system, and appropriate method for such systems are wavelets, since wavelets can be generated in the space of solutions. In this work we apply the Legendre wavelets to solve the corresponding integral equation. Numerical implementation of the method is illustrated by benchmark problems originated from heat transfer. The behavior of the initial heat function along with the position axis during the time have been shown through three dimensional plots.
Keywords: Volterra integral equation of the first kind, Heat equation, Numerical solution, Legendre wavelets -
In this work, we investigate fractional version of the Fisher equation and solve it by using an efficient iteration technique based on the Haar wavelet operational matrices. In fact, we convert the nonlinear equation into a Sylvester equation by the Haar wavelet collocation iteration method (HWCIM) to obtain the solution. We provide four numerical examples to illustrate the simplicity and efficiency of the technique.Keywords: fractional differential equation, Haar wavelet, Operational matrices, Numerical solution, iterative technique, Sylvester equation
-
در این مقاله با بکارگیری بسط تیلور حل عددی یک دستگاه از معادلات انتگرال جبری تشریح می گردد. این دستگاه معادلات انتگرال جبری شامل تابع مجهول و مشتقاتش می باشد. همچنین تحت شرایطی همگرایی جواب حاصل از این روش به جواب دقیق دستگاه اثبات شده و ضمنا چند مثال برای توصیف این روش در تعیین جواب عددی آن و دقت روش مذکور ارایه گردیده است. در این مقاله با بکارگیری بسط تیلور حل عددی یک دستگاه از معادلات انتگرال جبری تشریح می گردد. این دستگاه معادلات انتگرال جبری شامل تابع مجهول و مشتقاتش می باشد. همچنین تحت شرایطی همگرایی جواب حاصل از این روش به جواب دقیق دستگاه اثبات شده و ضمنا چند مثال برای توصیف این روش در تعیین جواب عددی آن و دقت روش مذکور ارایه گردیده است. در این مقاله با بکارگیری بسط تیلور حل عددی یک دستگاه از معادلات انتگرال جبری تشریح می گردد. این دستگاه معادلات انتگرال جبری شامل تابع مجهول و مشتقاتش می باشد. همچنین تحت شرایطی همگرایی جواب حاصل از این روش به جواب دقیق دستگاه اثبات شده و ضمنا چند مثال برای توصیف این روش در تعیین جواب عددی آن و دقت روش مذکور ارایه گردیده است.
کلید واژگان: معادلات انتگرال جبری، بسط تیلور، معادلات انتگرال ولترا، آنالیز خطاAlgebraic integral equations is a special category of Volterra integral equations system, that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becomes a linear equation system of the unknown function and its derivatives. Moreover, the convergence analysis of this method will be shown by preparing some theorems. Several examples are included to illustrate the efficiency and accuracy of the proposed technique and also the results are compared with the different methods.
Keywords: Integral algebraic equations, Volterra integral equations system, Taylor expansion, Numerical Solution, Error analysis -
Iranian Journal of Numerical Analysis and Optimization, Volume:10 Issue: 1, Winter and Spring 2020, PP 121 -138
Many phenomena in various fields of physics are simulated by parabolic partial differential equations with the nonlocal initial conditions, while there are few numerical methods for solving these problems. In this paper, the Ritz–Galerkin method with a new approach is proposed to give the exact and approximate product solution of a parabolic equation with the nonstandard initial conditions. For this purpose, at first, we introduce a function called satisfier function, which satisfies all the initial and boundary conditions. The uniqueness of the satisfier function and its relation to the exact solution are discussed. Then the Ritz–Galerkin method with satisfier function is used to simplify the parabolic partial differential equations to the solution of algebraic equations. Error analysis is worked by using the property of interpolation. The comparisons of the obtained results with the results of other methods show more accuracy in the presented technique.
Keywords: Nonlocal time weighting initial condition, Ritz–Galerkin method, Satisfier function, Bernstein polynomials, Numerical solution, Error analysis -
در این مقاله یک مدل غیرخطی از مرتبه کسری برای تحلیل و کنترل گسترش ویروس HIV ارائه شده و سپس نقاط تعادل آن که به نقطه تعادل بدون بیماری و نقطه تعادل عفونت شناخته می شوند یافت می شوند و پایداری آن ها مورد بحث قرار می گیرد. شاخص انتقال یا عدد مولد که تابعی از پارامترهای ثابت موجود در مدل است، نقش مهمی در پایداری مدل فوق ایفا می کند. به عبارتی دقیق تر زمانی که ، نقطه تعادل بدون بیماری جاذب است. در مقابل وقتی که ، ناپایدار و نقطه تعادل عفونت وجود دارد و جاذب خواهد بود. در پایان نیز چند مثال عددی برای بررسی تاثیر پارامترهای موجود در مدل بر گسترش بیماری بیان می شود.کلید واژگان: نقاط تعادل، پایداری، مدل HIV، ایدز با مشتقات مرتبه ی کسری، حل عددی، الگوریتم گرانوالد-لتنیکوفIn this paper a non-linear model with fractional order is presented for analyzing and controlling the spread of HIV virus. Both the disease-free equilibrium and the endemic equilibrium are found and their stability is discussed. The basic reproduction number , which is a function of the constant parameters in the model, plays an essential role in the stability of the above model. In more precise expression, When the disease-free equilibrium is attractor, but when , is unstable and the endemic equilibrium exists and it is an attractor. Finally numerical simulations are also established to investigate the influence of the parameters in the model on the spread of the disease.Keywords: Equilibrium Points, stability, HIV, AIDS Model with Fractional Derivatives, Numerical Solution, Grünwald-Letincov Algorithm
-
International Journal of Mathematical Modelling & Computations, Volume:8 Issue: 4, Autumn 2018, PP 239 -254In this paper, the optimal control of transmission dynamics of hand, foot and mouth disease (HFMD), formulated by a compartmental deterministic SEIPR (Susceptible-Incubation (Exposed)- Infected - Post infection virus shedding - Recovered) model with vaccination and treatment as control parameters is considered. The objective function is based on the combination of minimizing the number of infected individuals and the cost involved in the interventions of vaccination given to the susceptible population and treatment given to the infected population. The existence for the optimal control pair is proved and the characterization of the optimal control pair is obtained by applying the Pontryagin's maximum principle. The variational iteration method is adopted to solve the non-linear Hamilton equations derived from the Pontryagin's maximum principle theory. These equations constitute a two-point boundary value problem. By considering the correction functionals of the Hamilton equations, the Lagrange multipliers are easily identified and practical iteration formulas are derived. An algorithm is developed, based on this formulas, to determine iteratively the solutions of the Hamilton equations with a desired accuracy. With the aid of solutions obtained, the optimal control law can be easily deduced. The results were analyzed and interpreted graphically using Maple.Keywords: Hand, Foot, Mouth Disease, Nonlinear System of Differential Equations, Optimal Control, Variational Iteration Method, Numerical Solution
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.