operational matrices
در نشریات گروه ریاضی-
International Journal Of Nonlinear Analysis And Applications, Volume:16 Issue: 7, Jul 2025, PP 107 -120
The wave equations are one of the most important equations in engineering and physics, which are usually formulated as hyperbolic partial differential equations with special boundary conditions. In this paper, a numerical method for solving these equations based on Bernstein polynomials is introduced. The properties of Bernstein polynomial operational matrices turn this differential equation and its boundary conditions into a system of algebraic equations. Some numerical examples illustrate the accuracy, validity, and applicability of the new technique.
Keywords: Bernstein Polynomial, Two Dimensions Bernstein Polynomial, Best Approximation, Operational Matrices, Kronecker Products, Hyperbolic Partial Differential Equation Of Second Order -
Iranian Journal of Numerical Analysis and Optimization, Volume:14 Issue: 3, Summer 2024, PP 875 -899The presented work introduces a new class of nonlinear optimal control problems in two dimensions whose constraints are nonlinear Ginzburg−Landau equations with fractal−fractional (FF) derivatives. To acquire their ap-proximate solutions, a computational strategy is expressed using the FF derivative in the Atangana−Riemann−Liouville (A-R-L) concept with the Mittage-Leffler kernel. The mentioned scheme utilizes the shifted Jacobi polynomials (SJPs) and their operational matrices of fractional and FF derivatives. A method based on the derivative operational matrices of SJR and collocation scheme is suggested and employed to reduce the problem into solving a system of algebraic equations. We approximate state and control functions of the variables derived from SJPs with unknown coef-ficients into the objective function, the dynamic system, and the initial and Dirichlet boundary conditions. The effectiveness and efficiency of the suggested approach are investigated through the different types of test problems.Keywords: Fractal−Fractional (FF) Derivative, Shifted Jacobi Polynomials (Sjps), Operational Matrices, Nonlinear Ginzburg−Landau Equation, Opti- Mal Control Problem
-
Numerical solution of system of nonlinear Fredholm integro-differential equations using CAS waveletsIn this paper, we use the CAS wavelets as basis functions to numerically solve a system of nonlinear Fredholm integro-differential equations. To simplify the problem, we transform the system into a system of algebraic equations using the collocation method and operational matrices. We show the convergence of the presented method and then demonstrate its high accuracy with several illustrative examples. This approach is particularly effective for equations that admit periodic functions because the employed basis CAS functions are inherently periodic. Throughout our numerical examples, we observe that this method provides exact solutions for equations with trigonometric functions at a lower computational cost when compared to other methods.Keywords: Integro-differential equations, CAS wavelets, collocation method, Operational matrices
-
In this paper, we propose a new approach to solve weakly singular fractional delay integro-differential equations. In the proposed approach, we apply the operational matrices of fractional integration and delay function based on the shifted Chebyshev polynomials to approximate the solution of the considered equation. By approximating the fractional derivative of the unknown function as well as the unknown function in terms of the shifted Chebyshev polynomials and substituting these approximations into the original equation, we obtain a system of nonlinear algebraic equations. We present the convergence analysis of the proposed method. Finally, to show the accuracy and validity of the proposed method, we give some numerical examples.Keywords: Operational matrices, fractional delay integro-differential equation, Weakly singular kernel
-
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is effective and appropriate for obtaining the numerical solution of the timefractional Modified Camassa-Holm equation and Time fractional Modified Degasperis-Procesi equation.
Keywords: Fractional differential equation, Haar wavelet, Operational matrices, Iterative method, Sylvester equation -
در این مقاله، یک روش محاسباتی برای حل دستگاه های معادلات انتگرال ولترا و فردهلم ارایه شده است که یک رویکرد ترکیبی بر اساس توابع بلوک پالس و نوع سوم چند جمله های چبیشف است که ما به آنها به طور خلاصه (HBV) اشاره خواهیم کرد. با استفاده از روش HBV و ماتریس عملیاتی انتگرال، چنین دستگاه هایی را می توان به دستگاه معادلات جبری کاهش داد. به وجود و منحصر به فرد بودن جواب هم پرداخته شده است. چند مثال برای روشن شدن کارآیی و اثر بخشی روش ارایه شده است.
In this paper, we present a computational method for solving systems of Volterra and Fredholm integral equations which is a hybrid approach, based on the third-order Chebyshev polynomials and block-pulse functions which we will refer to as (HBV), for short. The existence and uniqueness of the solutions are addressed. Some examples are provided to clarify the efficiency and accuracy of the method.
Keywords: Systems of Fredholm, Volterra integral equations, Hybrid Method, Existence, uniqueness, Operational Matrices -
The paper reports a spectral method for generating an approximate solution for the space-time fractional PDEs with variable coefficients based on the spectral shifted Jacobi collocation method in conjunction with the shifted Jacobi operational matrix of fractional derivatives. The spectral collocation method investigates both temporal and spatial discretizations. By applying the shifted Jacobi collocation method, the problem reduces to a system of algebraic equations, which greatly simplifies the problem. Numerical results are given to establish the validity and accuracy of the presented procedure for space-time fractional PDE.Keywords: Jacobi polynomials, Operational matrices, space-time PDEs, Collocation method
-
As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numerical method based on Taylor series expansion and Haar wavelets is presented for solving coupled system of nonlinear partial differential equations. Efficiency and accuracy of the proposed method is depicted by comparing with classical methods.
Keywords: Haar wavelet, Taylor series, Collocation points, Nonlinear coupled evolution equations, Operational matrices -
The Riesz fractional advection-diffusion is a result of the mechanics of chaotic dynamics. It’s of preponderant importance to solve this equation numerically. Moreover, the utilization of Chebyshev polynomials as a base in several mathematical equations shows the exponential rate of convergence. To this approach, we transform the interval of state space into the interval [−1, 1] × [−1, 1]. Then, we use the operational matrix to discretize fractional operators. Applying the resulting discretization, we obtain a linear system of equations, which leads to the numerical solution. Examples show the effectiveness of the method.
Keywords: Operational matrices, Chebyshev polynomials, fractional partial differential equations, Riesz fractional advection-diffusion -
In this paper, a Laguerre collocation method is presented in order to obtain numerical solutions for linear and nonlinear Lane-Emden type equations and their initial conditions. The basis of the present method is operational matrices with respect to modified generalized Laguerre polynomials(MGLPs) that transforms the solution of main equation and its initial conditions to the solution of a matrix equation corresponding to the system of algebraic equations with the unknown Laguerre coefficients. By solving this system, coefficients of approximate solution of the main problem will be determined. Implementation of the method is easy and has more accurate results in comparison with results of other methods.Keywords: Modified generalized Laguerre polynomials, Numerical analysis, Collocation method, Operational matrices, Lane-Emden type equations
-
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 1, Winter-Spring 2022, PP 467 -484
In this paper we apply the Chebyshev polynomials method for the numerical solution of a class of variable-order fractional integro-differential equations with initial conditions. Moreover, a class of variable-order fractional integro-differential equations with fractional derivative of Caputo-Prabhakar sense is considered. The main aim of the Chebyshev polynomials method is to derive four kinds of operational matrices of Chebyshev polynomials. With such operational matrices, an equation is transformed into the products of several dependent matrices, which can also be viewed as the system of linear equations after dispersing the variables. Finally, numerical examples have been presented to demonstrate the accuracy of the proposed method, and the results have been compared with the exact solution.
Keywords: Variable order fractional, Prabhakar fractional derivative, Chebyshev polynomials, Numerical method, Operational matrices -
In this paper, we propose a new numerical algorithm for the approximate solution of non-homogeneous fractional differential equation. Using this algorithm the fractional differential equations are transformed into a system of algebraic linear equations by operational matrices of block-pulse and hybrid functions. Based on our new algorithm, this system of algebraic linear equations can be solved by a proposed (TSI) method. Further, some numerical examples are given to illustrate and establish the accuracy and reliability of the proposed algorithm.
Keywords: fractional differential equation, Block-pulse wavelet, Hybrid function, Operational matrices, Two stage iterative method -
Journal of Mathematical Analysis and its Contemporary Applications, Volume:2 Issue: 1, Spring 2020, PP 9 -16In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Moreover, the effect of noise shows our method is stable.Keywords: Nonlinear Volterra-Fredholm integro-differential equation, Block-pulse functions, Taylor expansion, Operational matrices
-
در این تحقیق روشی مستقیم در حل معادلات انتگرال فردهلم-ولترا غیرخطی ارایه می کنیم. با بکارگیری توابع بلک پالس و ماتریسهای عملیاتی و همچنین بسط تیلور معادله را به یک دستگاه غیرخطی تبدیل می کنیم. با چند مثال عددی دقت و کارایی روش را نشان می دهیم.
کلید واژگان: معادلات انتگرال فردهلم-ولترا غیرخطی، توابع بلک پالس و ماتریسهای عملیاتیIn this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions are stable.
Keywords: Nonlinear Fredholm-Volterra integral equation, Block-pulse functions, Operational matrices -
In this work, we investigate fractional version of the Fisher equation and solve it by using an efficient iteration technique based on the Haar wavelet operational matrices. In fact, we convert the nonlinear equation into a Sylvester equation by the Haar wavelet collocation iteration method (HWCIM) to obtain the solution. We provide four numerical examples to illustrate the simplicity and efficiency of the technique.Keywords: fractional differential equation, Haar wavelet, Operational matrices, Numerical solution, iterative technique, Sylvester equation
-
در این مقاله یک روش برای حل یک کلاس از مساله کنترل بهینه کسری دوبعدی با استفاده از ماتریس های عملیاتی چندجمله ای لژاندر ارایه می دهیم. لازم به ذکر است که دستگاه دینامیکی مساله براساس مشتق کسری کاپوتوی دوبعدی می باشد. در روش مورد نظر، انتگرال دوگانه توسط قاعده گاوس-لژاندر دوبعدی تقریب زده می شود و سپس با کمک معادله لاگرانژین یک دستگاه معادلات غیرخطی بدست می آید. این دستگاه معادلات غیرخطی با کمک روش تکراری نیوتن حل و ضرایب مجهول تعیین می گردد. در انتها روش ارایه شده را بر روی یک مساله کسری با درجه مشتقات کسری متفاوت پیاده سازی می نماییم. قابل توجه است که تمامی محاسبات با کمک نرم افزار متمتیکا انجام شده است
کلید واژگان: مشتق جزئی کسری کاپوتو، چندجمله ای لژاندر، ماتریس عملیاتی، قاعده انتگراگیری گاوس-لژاندر In this article, we present a numerical method for solving a class of two-dimensional fractional optimal control problems by the Legendre polynomial basis with fractional operational matrix. It should be mentioned that the dynamic system of the problem is based on the Caputo fractional partial derivative. This method, the dual integral is approximated by Gauss-Legendre rule, and then by using the Lagrangian equation, a nonlinear equation is obtained. This nonlinear equation set is solved by Newton's iterative method and unknown coefficients is determined. Finally, the proposed method was applied on a fractional problem with the different degree of fractional derivative. Also, the CPU time of method is exhibited. It is notable that all calculations were obtained by the Mathematica software.
Keywords: Partial differential of fractional Caputo, Legendre polynomial, Operational matrices, Legendre-Gauss integration rule -
هدف مقاله فعلی، ساختن توابع ژاکوبی کسری انتقال یافته (SFJFs) بر اساس چندجمل های های ژاکوبی برای حل عددی معادلات دیفرانسیل پانتوگراف مرتبه کسری است. برای دستیابی به این هدف، ابتدا ماتریس های عملیاتی انتگرال، حاصل ضرب و پانتوگراف، مربوط به پایه مرتبه کسری، به دست می آیند (ماتریس عملیاتی انتگرال بر حسب تعریف انتگرال کسری ریمان-لیوویل به دست می آید) .سپس، از این ماتریس ها برای تبدیل مساله اصلی به مجموعه ای از معادلات جبری استفاده می شود. سرانجام، اعتبار و کارایی روش پیشنهادی به وسیله مثال های عددی نشان داده می شود. هم چنین، برخی قضایا در مورد وجود جواب مساله تحت بررسی و همگرایی روش ارائه می شوند.کلید واژگان: معادله دیفرانسیل پانتوگراف کسری، توابع ژاکوبی مرتبه کسری، مشتق کاپوتو، انتگرالریمان-لیوویلIranian Journal of Numerical Analysis and Optimization, Volume:9 Issue: 1, Winter and Spring 2019, PP 37 -68The aim of the current paper is to construct the shifted fractional-order Jacobi functions (SFJFs) based on the Jacobi polynomials to numerically solve the fractional-order pantograph differential equations. To achieve this purpose, first the operational matrices of integration, product, and pantograph, related to the fractional-order basis, are derived (operational matrix of integration is derived in Riemann–Liouville fractional sense). Then, these matrices are utilized to reduce the main problem to a set of algebraic equations. Finally, the reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments. Also, some theorems are presented on existence of solution of the problem under study and convergence of our method.Keywords: Fractional pantograph differential equation, Fractional-order Jacobi functions, Operational matrices, Caputo derivative, Riemann–Liouville integral.
-
در این مقاله، یک الگوریتم بهینه سازی جدید و موثر برای حل معادله ی غیرخطی انتشار و انتقال کسری مرتبه ی متغیر زمانی با استفاده از مفهوم مشتق کسری مرتبه ی متغیر از نوع کاپوتو ارائه می دهیم. برای بدست آوردن جواب، ابتدا رده ای از چندجمله ای های تعمیم یافته را معرفی، سپس ماتریس های عملگری وابسته به آن ها ساخته می شوند. در تکنیک بهینه سازی ارائه شده، جواب مسئله ی مورد بررسی بر حسب چندجمله ای های تعمیم یافته با ضریب آزاد و پارامترهای کنترل کننده ی نامعلوم توسیع داده می شود. مهمترین فایده ی این روش تبدیل معادله ی دیفرانسیل با مشتقات جزئی کسری مرتبه ی متغیر زمانی به یک سیستم از معادلات جبری غیرخطی می باشد. در ادامه، ضرایب آزاد و پارامترهای کنترل کننده به طور بهینه با مینیمم سازی خطای جواب تقریبی بدست خواهند آمد. تحلیل همگرایی روش ارائه شده با بدست آوردن قضیه ای جدید در خصوص توابع دو متغیره تضمین می شود. در پایان، نتایج عددی بدست آمده نشان خواهند داد که الگوریتم ارائه شده برای حل معادله ی ذکر شده موثر و از میزان دقت بسیار بالایی برخوردار است.کلید واژگان: معادله ی غیرخطی انتشار و انتقال کسری مرتبه ی متغیر زمانی، ماتریس های عملگری، الگوریتم بهینه سازی، چندجمله ای های تعمیم یافته، پارامترهای کنترل کنندهIn this paper, a new and effective optimization algorithm is proposed for solving the nonlinear time fractional convection-diffusion equation with the concept of variable-order fractional derivative in the Caputo sense. For finding the solution, we first introduce the generalized polynomials (GPs) and construct the variable-order operational matrices. In the proposed optimization technique, the solution of the problem under consideration is expanded in terms of GPs with unknown free coefficients and control parameters. The main advantage of the presented method is to convert the variable-order fractional partial differential equation to a system of nonlinear algebraic equations. Also, we obtain the free coefficients and control parameters optimally by minimizing the error of the approximate solution. Finally, the numerical examples confirm the high accuracy and efficiency of the proposed method in solving the problem under study.Keywords: Nonlinear variable-order time fractional convection-diffusion equation, Operational matrices, Optimization algorithm, Generalized polynomials (GPs), Control parameters
-
در این مقاله، با استفاده از چندجمله ای های لژاندر انتقال یافته، توابع سه متغیره را تقریب می زنیم. سپس ماتریس های عملیاتی مشتق کسری کاپوتو در حالت یک بعدی و دو بعدی و همچنین ماتریس های عملیاتی انتگرال کسری ریمان-لیوویل را با استفاده از چندجمله ای های لژاندر انتقال یافته معرفی می نمائیم. با بکارگیری این مفاهیم بر روی معادله تلگراف دو بعدی با مشتقات کسری فضا-زمان، مسئله موردنظر به حل دستگاهی از معادلات جبری تبدیل خواهد شد که براحتی قابل حل می باشد. برای نشان دادن کارایی و دقت روش مطرح شده، دو مثال آورده شده است.کلید واژگان: ماتریس های عملیاتی، مشتق کسری کاپوتو، انتگرال کسری ریمان-لیوویل، چندجمله ای های لژاندر انتقال یافته، معادله تلگراف دوبعدی با مشتقات کسریFractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They are also used in modeling of many chemical processed, mathematical biology and many other problems in engineering. The history and a comprehensive treatment of FDEs are provided by Podlubny and a review of some applications of FDEs are given by Mainardi.Keywords: Operational matrices, Caputo fractional derivative, Riemann-Liouville fractional integral, Shifted Legendre polynomials, Two-dimensional space-time fractional telegraph equation
-
In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.Keywords: Volterra integral equation, Bernstein polynomials, Operational matrices, Transformation matrices
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.